
Dgraph 1.0.2
Kyle Kingsbury

2018-08-23

Dgraph is a distributed graph database which uses Raft for per-shard replication and a custom transactional pro-
tocol, based on Omid, Reloaded, for snapshot-isolated cross-shard transactions. Dgraph claimed to offer snapshot
isolation, per-client monotonicity, and linearizability. However, in Dgraph 1.0.2 through 1.0.6, we found multiple
deadlocks & crashes in the cluster join and node recovery processes, duplicate upserted records, snapshot isolation
violations, single-client sequential violations, records with missing fields, and in some cases, the loss of all but
one inserted record. Safety issues were mostly associated with process crashes, restarts, and predicate migration,
but some occured in healthy clusters during normal operation. Dgraph has made significant progress, but 4 of
the 23 issues we identified remain unresolved, including the corruption of data in healthy clusters. This work was
funded by Dgraph, and conducted in accordance with the Jepsen ethics policy.

1 Errata

2019-04-10: The long fork test used in this analysis con-
tained a bug which caused it to (in many cases) fail
to identify long fork anomalies—though we did find in-
stances of long fork using other tests. We have re-checked
Dgraph 1.0.13 with a corrected checker, and its long fork
tests still pass.

2 Background

Dgraph is a graph database which aims to provide scal-
able, highly-available, and snapshot-isolated transac-
tions over a directed labeled graph, while minimizing
network communication for performance.

Conceptually, Dgraph stores a set of (entity,
attribute, value) triples. Entities (also known as
subjects), are compact binary UIDs. Attributes (also
known as predicates) are named edges. Values (also
known as objects) are either literal values, or the UIDs
of other entities. Together, these triples form an adja-
cency list representation of a graph. The types, car-
dinalities, and indices of each predicate are given by
a partial schema language—when a schema is not de-
fined, one is automatically inferred.

To read this graph, Dgraph offers a recursive query
language adapted from GraphQL. Mutations are ex-
pressed by listing triples to add or remove from the
graph. For convenience, Dgraph can also represent all
triples associated with a given entity as a JSON object
mapping attributes to values—where values are other
entities, that entity’s attributes and values are embed-
ded as an object, recursively.

To store large datasets, Dgraph shards the set of
triples by attribute, and assigns each attribute to a
group of nodes. Each group uses Raft to provide repli-
cated, sequentially/linearizably consistent storage and
queries over its triples. So long as a majority of each
group’s servers remain intact and connected, Dgraph
can theoretically preserve safety and availability.1

2.1 Consistency

As of February 2018, Dgraph’s FAQ said Dgraph was
CP, preserving consistency with reduced availability
during partitions. The design concepts documenta-
tion clarifies that Dgraph transactions provide snap-
shot isolation (SI), which means that every transaction
observes an atomic snapshot of the database at some
start time in the past, and commits atomically at some
later time, only if none of the keys it has written have
been altered by other transactions between that trans-

1Note that Dgraph may create groups with fewer than the specified number of replicas, when the number of nodes in that group is not
evenly divisible by the target replica count. Those shards have reduced fault tolerance.

1

https://www.usenix.org/system/files/conference/fast17/fast17-shacham.pdf
https://dgraph.io/
https://jepsen.io/ethics.html
https://dgraph.io/
https://docs.dgraph.io/query-language/#schema
https://docs.dgraph.io/query-language/
https://docs.dgraph.io/query-language/
https://graphql.org/
https://docs.dgraph.io/mutations/
https://docs.dgraph.io/mutations/#json-mutation-format
https://docs.dgraph.io/deploy/#understanding-dgraph-cluster
https://docs.dgraph.io/deploy/#understanding-dgraph-cluster
https://docs.dgraph.io/faq/#dgraph-is-not-highly-available
https://docs.dgraph.io/design-concepts/
https://docs.dgraph.io/design-concepts/
https://www.microsoft.com/en-us/research/wp-content/uploads/2016/02/tr-95-51.pdf
https://www.microsoft.com/en-us/research/wp-content/uploads/2016/02/tr-95-51.pdf

action’s start time and commit time.

Snapshot isolation is a relatively strong consistency
model, but still allows some anomalies. For instance,
two concurrent transactions can read the same pair
of records and update one of the two concurrently, so
long as they choose different records to update: write
skew. Transactions are also allowed to read from arbi-
trary points in the past, which implies that completed
writes may not be visible to later transactions: stale
reads. However, Dgraph’s comparison page states:

Dgraph is consistently replicated. Any
read followed by a write would be visible
to the client, irrespective of which replica
it hit. In short, we achieve linearizable
reads.

The 1.0 release blog post goes on to call Dgraph “pro-
duction ready”, claiming:

Dgraph provides consistent (synchronous)
replication, utilizing Raft…. Dgraph guar-
antees atomic consistency of writes, which
means irrespective of which replica is hit
for reading, any write done before is guar-
anteed to be available.

However, a careful reading of Dgraph’s earlier transac-
tions announcement suggests a more subtle interpre-
tation:

There is no need to worry about seeing a
previous database state when querying a
replica. From the point of view of a single
client, once a transaction is committed its
changes are guaranteed to be visible in all
future transactions.

The first sentence suggests that stale reads are pro-
hibited in general, which sounds like linearizability.
However, the second sentence suggests that this might
only hold for individual clients, and not between clients.
Enforcing an order at each client separately might be
something like sequential consistency, rather than lin-
earizability. As we will see, this client-side ordering
turned out to be trickier than anticipated, and Dgraph
went on to introduce a stronger ordering invariant dur-
ing our collaboration.

2.2 Algorithm

To provide transactional isolation across different Raft
groups, Dgraph has built a custom transaction sys-
tem adapted from the Omid Reloaded paper. Stor-
age nodes (called Alpha) are controlled by a supervi-
sory system (called Zero). Zero nodes form a single
Raft cluster, which organizes Alpha nodes into shards
(called groups). Each group runs an independent Raft
cluster.

These Zero leaders provide a central coordinator for all
transactions, allocating UIDs to new entities, assign-
ing timestamps to transactions, and checking trans-
actions for conflicts. Timestamps are assigned by re-
serving a block of timestamps via Raft, then issuing
timestamps from that block without further coordina-
tion. Zero leaders also detect conflicting transactions
by maintaining an index of the timestamp when each
row was last modified. Before committing a transac-
tion, Zero checks every row in the write set to ensure
that it hasn’t changed since the start of the transac-
tion. If the transaction is valid, Zero then obtains a
commit timestamp, updates every last-committed time
for written rows to that value, and submits a message
to Raft, marking that transaction as committed.2

As a transaction takes place, clients update Alpha
servers with prewrites (tentative, uncommitted ver-
sions of rows), then contact Zero to commit or abort.
Once transactions are committed or aborted, Zero
streams that commit state to each Alpha server,
which uses it to determine whether to promote those
prewrites to stable storage, or, if the transaction
wound up aborting, to delete them.

To ensure reads observe all prior committed writes,
Zero also streams a high-water-mark timestamp, be-
low which all transactions have either been committed
or aborted. Clients, in turn, keep track of the most re-
cent Raft index they’ve observed on each Alpha group,
and include that with their requests to ensure that
they always observe monotonic states on any particu-
lar group. Dgraph terms this scheme “client side se-
quencing”.

3 Test Design

We designed a suite of Jepsen tests to verify Dgraph’s
safety properties, using a five node cluster with repli-

2Readers may question why Dgraph executes so much of its algorithm outside Raft, opting instead to treat Raft more as a sequentially
consistent log. For concision, we omit much of Dgraph’s replication and commit algorithm here, but there are additional constraints which
theoretically help to ensure Dgraph’s state machine is correctly coupled to Raft; among them, propagating timestamp high watermarks.
Dgraph has not yet published the details of their algorithm, but the Omid Reloaded paper provides a useful starting point.

2

https://jepsen.io/consistency/models/snapshot-isolation
https://jepsen.io/consistency/models/snapshot-isolation
https://docs.dgraph.io/dgraph-compared-to-other-databases/#transactions
https://blog.dgraph.io/post/releasing-v1.0/
https://blog.dgraph.io/post/v0.9/
https://blog.dgraph.io/post/v0.9/
https://courses.cs.washington.edu/courses/cse548/10wi/Lamport.pdf
https://www.usenix.org/system/files/conference/fast17/fast17-shacham.pdf
https://github.com/dgraph-io/dgraph/blob/17cea1e2488607b458a03dc97799394a0543d0ab/dgraph/cmd/zero/oracle.go#L273-L309
https://github.com/dgraph-io/dgraph/blob/17cea1e2488607b458a03dc97799394a0543d0ab/dgraph/cmd/zero/oracle.go#L273-L309
https://github.com/jepsen-io/jepsen

cation factor three. This means Dgraph Alpha nodes
were organized into two groups: one with three repli-
cas, and one with two. Every node ran an instance
of both Zero and Alpha. We began with a bank test,
adapted from our earlier CockroachDB analysis, and
designed more specific tests to explore anomalous be-
haviors as they arose.

3.1 Set

Our most basic test inserts a sequence of unique num-
bers into Dgraph, then queries for all extant values.
We then check that every successfully acknowledged
insert is present in the final read. We designed two
variants of this test.

The first variant uses a schema with type and value
fields, and for each inserted value v, creates a new en-
tity with type “element” and value v. To query, we
search for every object with type “element”, and re-
turn their corresponding values. The join from type
to value attributes helps verify that Dgraph’s type in-
dex works correctly.

The second variant omits the type field and instead
uses a single entity; every insert creates a triple map-
ping that entity to value v. This means that we can
query for every value associated with that particular
UID, which maps directly to the way Dgraph stores
triples internally. Dgraph finds the group associated
with the value predicate, looks up that particular en-
tity’s UID in that group, and returns all matching val-
ues, without using any indices.

If Dgraph allows stale reads, we might read a past
snapshot of the database, and miss some more recently
inserted values. We can work around this problem
by keeping track of acknowledged writes externally,
reading each of those keys, and re-writing the val-
ues we found. Snapshot isolation should detect these
write conflicts and ensure that either our read+re-
write transaction aborts, or, if it commits, that it did
not overlap with any successful write transaction.

3.2 Upsert

An upsert is a common database operation in which
a record is created if and only if an equivalent record
does not already exist. For instance, we might wish to
ensure a user record exists for a given email, but if the
email is already taken, to avoid creating a second user.
In SQL databases, a unique primary key can be used
as the equivalence relation for upserts, but in Dgraph
there are no uniqueness constraints. Instead, users

perform a transaction which reads to ensure the record
doesn’t already exist, then inserts if necessary:

Upsert operations are intended to be run
concurrently, as per the needs of the appli-
cation. As such, it’s possible that two con-
currently running operations could try to
add the same node at the same time. For
example, both try to add a user with the
same email address. If they do, then one of
the transactions will fail with an error in-
dicating that the transaction was aborted.

One possible problem: snapshot isolation only detects
conflicts between transactions which write the same
objects, but inserts, by definition, write unique objects,
and will never conflict. This allows write skew: two
concurrent upserts of the same value could read an
empty state, insert their respective rows, and commit,
resulting in two records instead of one. To avoid this
problem, Dgraph also treats indices as their own ob-
jects, for the purposes of conflict detection.

The index is stored as many key/value
pairs, where each key is a combination of
the predicate name and some function of
the predicate value (e.g. its hash for the
hash index). If two transactions modify the
same key concurrently, then one will fail.

To verify that this conflict detection works correctly, we
have several transactions concurrently attempt to up-
sert the same value, and subsequently read back all
objects with that value—if upserts are safe, we should
never find more than one copy for a given key.

3.3 Delete

Early experiments with Dgraph led to the suspicion
that deleting records might cause anomalous behav-
ior, especially with respect to indices, so we designed
a test for repeated upserts and deletions of the same
value. Axiomatically, upserts should never result in
more than one record—we verify this in the upsert test.
Our delete test extends this workload by concurrently
attempting to delete any records for an indexed value.
Since deleting can only lower the number of records,
not increase it, we expect to never observe more than
one record at any given time.

3.4 Bank

The bank test stresses several invariants provided by
snapshot isolation. We construct a set of bank ac-

3

https://jepsen.io/analyses/cockroachdb-beta-20160829
https://github.com/jepsen-io/jepsen/blob/3b2442588df43396e39d2e79bef208da9f5327ab/dgraph/src/jepsen/dgraph/set.clj#L17-L36
https://github.com/jepsen-io/jepsen/blob/3b2442588df43396e39d2e79bef208da9f5327ab/dgraph/src/jepsen/dgraph/set.clj#L63-L104
https://docs.dgraph.io/howto/#upsert-procedure
https://github.com/jepsen-io/jepsen/blob/3b2442588df43396e39d2e79bef208da9f5327ab/dgraph/src/jepsen/dgraph/upsert.clj#L23-L46
https://github.com/jepsen-io/jepsen/blob/3b2442588df43396e39d2e79bef208da9f5327ab/dgraph/src/jepsen/dgraph/upsert.clj#L23-L46
https://github.com/jepsen-io/jepsen/blob/3b2442588df43396e39d2e79bef208da9f5327ab/dgraph/src/jepsen/dgraph/delete.clj#L37-L58

counts, each with three attributes:

1. type, which is always “account”. We use this to
query for all accounts.

2. key, an integer which identifies that account.
3. amount, the amount of money in that account.

Our test begins with a fixed amount ($100) of money
in a single account, and proceeds to randomly transfer
money between accounts. Transfers proceed by read-
ing two random accounts by key, and writing back new
amounts for those accounts to reflect some money mov-
ing between them. Concurrently, clients read all ac-
counts to observe the total state of the system.

Since transfers write every key that they read, snap-
shot isolation precludes concurrent execution of any
transfers between intersecting accounts, guaranteeing
transfers are serializable. Read-only transactions can-
not affect the state of the system, and observe consis-
tent snapshots, which implies they too, must be seri-
alizable. From this, we can prove that the total of all
account balances should be constant.

Because we like to live dangerously, we permute the
order of reads and writes in transfer transactions at
random, upsert new account records when none exists,
and delete accounts which have a zero balance. This
puts additional stress on Dgraph’s index, which can-
not assume that queries for a certain key always refer
to the same entity. We also insert garbage data be-
fore aborting certain transactions, to help detect dirty
reads. Different accounts use different predicates to
store their keys, values, and types, which means that
transfers and reads may cross multiple groups, rather
than being executed on the same Raft cluster.

3.5 Long Fork

For performance reasons, some database systems im-
plement parallel snapshot isolation, rather than stan-
dard snapshot isolation. Parallel snapshot isolation al-
lows an anomaly prevented by standard SI: a long fork,
in which non-conflicting write transactions may be vis-
ible in incompatible orders. As an example, consider
four transactions over an empty initial state:

1. (write x 1)
2. (write y 1)
3. (read x nil) (read y 1)
4. (read x 1) (read y nil)

Here, we insert two records, x and y. In a serializable
system, one record should have been inserted before
the other. However, transaction 3 observes y inserted

before x, and transaction 4 observes x inserted before
y. These observations are incompatible with a total
order of inserts.

To test for this behavior, we insert a sequence of unique
keys, and concurrently query for small batches of those
keys, hoping to observe a pair of states in which the im-
plicit order of insertion conflicts.

3.6 Sequential

Dgraph claims to offer a sort of recency property:
clients are not supposed to observe a previous database
state. Dgraph’s documentation sometimes claims this
property is linearizability, and indeed, clients call the
data structure used to enforce monotonicity a “lineariz-
able read map”, but we know from conversations with
Dgraph’s engineers that this order holds only on indi-
vidual clients: while client A might fail to observe a
completed write by client B, B should subsequently ob-
serve its prior writes. This property seems loosely anal-
ogous to sequential consistency, which implies that
there exists some order of operations consistent with
the order on each individual process.3

It’s not clear how to overlay sequential consistency on
a snapshot-isolated system—should we consider a se-
quential “operation” to be a transaction? For nonserial-
izable histories, it might be impossible to find an order
consistent with each process. However, if we restrict
ourselves to scenarios for which SI implies serializabil-
ity, a serial order must exist, and we can verify that it
is compatible with the order on each process.

To do this, we establish a set of registers, each com-
prised of a key and a value. On each register sepa-
rately, we perform a series of increment operations,
mixed with reads of that register. Since our transac-
tions only interact with single keys, snapshot isolation
implies serializability. Since the value of a register can
only increase over time, we expect that for any given
process, and for any given register read by that pro-
cess, the value of that register should monotonically
increase.

4 Results

We tested Dgraph 1.0.2, and successive nightly & ex-
perimental builds, developing new tests and failure
modes incrementally. We began our testing with
healthy clusters, then gradually introduced network
partitions, Zero crashes, Alpha crashes, and predicate

3We believe prefix-consistent snapshot isolation may be what Dgraph is going for, but have not had time to explore this in full.

4

https://github.com/jepsen-io/jepsen/blob/3b2442588df43396e39d2e79bef208da9f5327ab/dgraph/src/jepsen/dgraph/bank.clj#L143-L161
https://github.com/jepsen-io/jepsen/blob/3b2442588df43396e39d2e79bef208da9f5327ab/dgraph/src/jepsen/dgraph/bank.clj#L143-L161
https://github.com/jepsen-io/jepsen/blob/3b2442588df43396e39d2e79bef208da9f5327ab/dgraph/src/jepsen/dgraph/bank.clj#L41-L55
https://github.com/jepsen-io/jepsen/blob/3b2442588df43396e39d2e79bef208da9f5327ab/dgraph/src/jepsen/dgraph/bank.clj#L41-L55
https://github.com/jepsen-io/jepsen/blob/3b2442588df43396e39d2e79bef208da9f5327ab/dgraph/src/jepsen/dgraph/bank.clj#L41-L55
https://github.com/jepsen-io/jepsen/blob/3b2442588df43396e39d2e79bef208da9f5327ab/dgraph/src/jepsen/dgraph/bank.clj#L41-L55
https://github.com/jepsen-io/jepsen/blob/3b2442588df43396e39d2e79bef208da9f5327ab/jepsen/src/jepsen/tests/long_fork.clj#L158-L196
https://github.com/jepsen-io/jepsen/blob/3b2442588df43396e39d2e79bef208da9f5327ab/jepsen/src/jepsen/tests/long_fork.clj#L158-L196
https://blog.dgraph.io/post/v0.9/
https://blog.dgraph.io/post/v0.9/
https://jepsen.io/consistency/models/sequential
https://github.com/jepsen-io/jepsen/blob/3b2442588df43396e39d2e79bef208da9f5327ab/dgraph/src/jepsen/dgraph/sequential.clj#L75-L100
https://github.com/jepsen-io/jepsen/blob/3b2442588df43396e39d2e79bef208da9f5327ab/dgraph/src/jepsen/dgraph/sequential.clj#L107-L127
https://github.com/jepsen-io/jepsen/blob/3b2442588df43396e39d2e79bef208da9f5327ab/dgraph/src/jepsen/dgraph/sequential.clj#L107-L127
https://github.com/jepsen-io/jepsen/blob/3b2442588df43396e39d2e79bef208da9f5327ab/dgraph/src/jepsen/dgraph/nemesis.clj#L88-L91
https://github.com/jepsen-io/jepsen/blob/3b2442588df43396e39d2e79bef208da9f5327ab/dgraph/src/jepsen/dgraph/nemesis.clj#L88-L91
https://github.com/jepsen-io/jepsen/blob/3b2442588df43396e39d2e79bef208da9f5327ab/dgraph/src/jepsen/dgraph/nemesis.clj#L38-L44
https://github.com/jepsen-io/jepsen/blob/3b2442588df43396e39d2e79bef208da9f5327ab/dgraph/src/jepsen/dgraph/nemesis.clj#L12-L36
https://github.com/jepsen-io/jepsen/blob/3b2442588df43396e39d2e79bef208da9f5327ab/dgraph/src/jepsen/dgraph/nemesis.clj#L46-L76
https://github.com/jepsen-io/jepsen/blob/3b2442588df43396e39d2e79bef208da9f5327ab/dgraph/src/jepsen/dgraph/nemesis.clj#L46-L76

moves, and randomized mixes thereof, at a variety of
time intervals. Our findings are as follows:

4.1 Schema issues

We found a minor issue around integer handling
when getting started with Dgraph: when Dgraph
first encounters a new attribute on a record, it in-
fers the schema for that attribute based on the sub-
mitted value. Notably, integers are inferred to be
floats, which means that a user could write 0 with-
out a schema, and when trying to read it back,
obtain 0.0 instead. Large integer values which
are not representable as floats could be silently co-
erced to different values: 9007199254740993 becomes
9007199254740992.0. 27670116110564327426, at the
upper end of the signed 64-bit integer range, comes
back as 2.7670116110564327E19: 426 fewer.

Moreover, users who use an int schema, which is sup-
posedly a 64-bit signed integer, might find large val-
ues silently remapped to other numbers. Values over
253 (9007199254740992) would be remapped to inte-
gers which were representable as 64-bit floats. Be-
cause floats can represent a wider range of integers
than ints, large integers like 9223372036854775296
might be mapped to 264, then coerced back to signed
64-bit integers, silently overflow that type, and wind
up as -9223372036854775808 (e.g. −263): a different
number of the wrong sign.

The JSON spec defines numbers with arbitrary deci-
mal precision, but does not specify how implementa-
tions will interpret those numbers. Dgraph now checks
for floats vs. ints during JSON parsing.

4.2 Cluster Join Issues

Early in the testing process, we discovered race condi-
tions in Dgraph’s cluster join procedure.

In 1.0.3, when joining a cluster, Alpha nodes request
a snapshot of their neighbors’ state—normally, from
the leader of their Raft group. However, if no leader
has yet been obtained, the node will block indefinitely,
waiting for one. Since the node is blocked, it cannot par-
ticipate in leader elections, which, in turn, prevents a
leader from being elected: a deadlock! Dgraph patched
this by updating local leader state asynchronously.

A separate bug in 1.0.3 caused Alpha to segfault on
startup: nodes would attempt to contact a leader im-
mediately, but if no leader was known, choose a ran-
dom node instead. That node might not be initialized,

which could lead it to dereference a null pointer and
crash. This issue was patched by not returning a ran-
dom leader, but instead waiting until a leader became
available, and retrying later.

In the same vein, a race condition allowed leaders to
respond to requests before they were fully initialized,
causing those leaders to segfault. Dgraph added fall-
back paths for methods that rely on uninitialized group
state to address this issue.

While investigating these crashes, Dgraph discovered
a fourth issue in 1.0.3, where Zero would allow con-
current join requests for new Alpha nodes, leading to
a deadlock. Dgraph fixed this by serializing join re-
quests.

Another lockup in 1.0.3 resulted from an interaction
between Raft, which only allows one pending cluster
change at a time, and concurrent join requests. If,
while joining a Raft group, a new Alpha node timed out,
that node would loop indefinitely, retrying the join pro-
cess forever. However, subsequent join requests would
fail, because the original join operation was still pend-
ing in Raft. That join operation was, in turn, stalled
because the joining node was stuck sending join mes-
sages, rather than processing the join. To fix this,
Dgraph patched the issue by removing the timeout.

Unfortunately, this patch introduced a new deadlock
in cluster join, where nodes would refuse to serve any
requests after startup, due to their joinCluster re-
quests being dropped by a Raft leader which didn’t
have quorum. This issue was fixed in 1.0.7.

On 1.0.4, we found yet another deadlock, where nodes
would get stuck in their JoinCluster call indefinitely.
Dgraph is still investigating.

4.3 Duplicate Upserts

In building the bank test, we discovered that the test
initialization process, which concurrently upserts a
single initial account, resulted in dozens of copies of
that account record, rather than one. We designed
the upsert test specifically to stress this behavior, and
found that under normal operating conditions, Dgraph
would allow arbitrarily many concurrent upserts to
succeed for the same key.

This occurred because the Dgraph node coordinating
an upsert transaction would keep track of that trans-
action’s write set (the keys that transaction wrote), but
if the node responsible for actually executing that trans-
action was remote (as opposed to local), the coordinator
forgot to include the write set in the commit message

5

https://github.com/dgraph-io/dgraph/issues/2377
https://github.com/dgraph-io/dgraph/issues/2377
https://github.com/dgraph-io/dgraph/issues/2378
https://tools.ietf.org/html/rfc7159#page-6
https://github.com/dgraph-io/dgraph/commit/9d0022e0397ce1be042f10e310c47a054aac8086
https://github.com/dgraph-io/dgraph/commit/9d0022e0397ce1be042f10e310c47a054aac8086
https://github.com/dgraph-io/dgraph/issues/2137
https://github.com/dgraph-io/dgraph/issues/2137
https://github.com/dgraph-io/dgraph/issues/2138
https://github.com/dgraph-io/dgraph/issues/2138
https://github.com/dgraph-io/dgraph/pull/2140
https://github.com/dgraph-io/dgraph/pull/2336
https://github.com/dgraph-io/dgraph/issues/2144#issuecomment-366822942
https://github.com/dgraph-io/dgraph/issues/2145
https://github.com/dgraph-io/dgraph/commit/807976c407b880cfac565cc709b6bee3c139f7f7
https://github.com/dgraph-io/dgraph/issues/2286
https://github.com/dgraph-io/dgraph/issues/2286
https://github.com/dgraph-io/dgraph/commit/eb3910cc14559cd73ee9c44fb98068a1b4ad2b13
https://github.com/dgraph-io/dgraph/issues/2376
https://github.com/dgraph-io/dgraph/issues/2149

sent to the remote node. As a result, the remote node
would assume the transaction had no conflicts (since
it wrote nothing!) and commit. Correctly filling out
the commit message’s write set resolved this issue, in
version 1.0.4.

However, 1.0.4 weakened the default safety semantics:
for performance, indices are no longer checked for con-
flicts by default, which means that upserts are still (by
default) unsafe. Instead, one must add a new index di-
rective, @upsert, on any indices used for upserts. This
informs Dgraph that those indices should be checked
for conflicts. With the appropriate @upsert directives,
upserts worked correctly.

4.4 Delete Anomalies

However, anomalies occurred when we introduced dele-
tions. With a mix of upserts, deletes, and reads of
single records identified by an indexed field key, we
found several unusual behaviors. A query for key =
13 could observe multiple copies of the same key:

[{:uid "0x148b", :key 13}
{:uid "0x150c", :key 13}]

This implies that some upserts must have failed to ob-
serve existing records, and, by inserting, created dupli-
cate copies. Worse yet, we can observe records with no
associated key:

[{:uid "0xcf"}
{:uid "0x110"}]

This is somewhat vexing, as a reasonable observer
might expect that the set of records with key = 13
would contain keys with the value 13, or, barring
that, any key whatsoever. These dangling records sug-
gest an inconsistency between the index and the raw
triples.

Moreover, dangling records can persist through subse-
quent deletions. To make matters even weirder, values
can disappear due to deletion, get stuck in a dangling
state, then reappear as full records—even in the con-
text of a single process, which is supposed to observe
transitions in a monotonic order.

These problems were caused, in part, by a race con-
dition between the insertion of a new subject4 and
a concurrent transaction which deleted all values for
that subject and some predicate. These deletes (which
Dgraph calls “SP*”) passed through a different code-
path which was not subject to the same atomicity guar-

antees as regular commits. In particular, delete opera-
tions would take effect regardless of which transaction
actually committed, and read transactions could ob-
serve deletions that committed after the read began—
i.e., snapshots weren’t actually snapshots.

In addition, Zero leader nodes failed to step down cor-
rectly: when asked to step down, they forgot to set their
leader variable to false. This meant that if a node
was later re-elected, it would assume it was already
a leader, and re-use timestamps, rather than obtain a
fresh block. That node would also fail to increment crit-
ical bounds on transaction timestamps used to ensure
monotonicity. These issues allowed re-elected leaders
to execute new transactions in the logical past. Cor-
rectly stepping down fixed this issue.

4.5 Read Skew

With a more reliable cluster join process, and work-
ing upserts, we discovered a read skew anomaly in the
bank test. Clients could observe an incomplete trans-
fer transaction between two accounts x and y, such
that x’s state was that prior to the transfer, and y’s
state was that after the transfer. This allowed reads
to observe incorrect total balances, which fluctuated
gradually through the course of the test. This behav-
ior should be prohibited by snapshot isolation, but oc-
curred constantly, even in healthy clusters.

Moreover, these skewed reads could be propagated
back into the state of the database by transfer trans-
actions, causing the total of all accounts to fluctuate
further and further over time.

Skewed reads stemmed from Dgraph’s use of client-
side sequencing: individual clients would keep track
of the last Raft index they had observed in each group,
and ensure subsequent queries observed a Raft state
at least that high.5 However, there were race condi-
tions in client-side sequencing: client A could insert a
record and commit, then client B could read, observe
a state prior to A’s insert, then insert a second copy of
that record and commit.

Dgraph introduced a new mode for transaction order-
ing: in addition to client-side sequencing, a server-side
sequencing directive requires follower nodes to check
with the leader and ensure that they have caught up to
the leader’s current state before responding to a query.
This increases latency, but prevents these phantom
anomalies in client-side sequencing.

4Recall that “subject” is another term for “entity”, and “predicate” is another term for “value”. Dgraph uses these interchangably.
5Owing to some confusion over what linearizability means, the structure storing the most recently observed Raft offset for each group

is called a linearizable read map. It does not provide linearizability.

6

https://github.com/dgraph-io/dgraph/commit/7f9c659f282601dbd58d3573bf62d4aaf23be60f
https://github.com/dgraph-io/dgraph/commit/7f9c659f282601dbd58d3573bf62d4aaf23be60f
https://github.com/dgraph-io/dgraph/issues/2148
https://github.com/dgraph-io/dgraph/pull/2220#issuecomment-372706623
https://github.com/dgraph-io/dgraph/pull/2220#issuecomment-372706623
https://github.com/dgraph-io/dgraph/pull/2220#issuecomment-372706623
https://github.com/dgraph-io/dgraph/pull/2220#issuecomment-372706623
https://github.com/dgraph-io/dgraph/pull/2261#issuecomment-376469899
https://github.com/dgraph-io/dgraph/pull/2261#issuecomment-376469899
https://github.com/dgraph-io/dgraph/issues/2143
https://github.com/dgraph-io/dgraph/issues/2143
https://github.com/dgraph-io/dgraph/pull/2287/files#diff-e7949a0879bc67d5514e8a008bab05bfR143
https://github.com/dgraph-io/dgraph/pull/2287/files#diff-e7949a0879bc67d5514e8a008bab05bfR143
https://docs.dgraph.io/design-concepts/#consistency-models

A second bug involved a race condition around SP*
deletions (deletions of all objects for a given subject
and predicate). When these deletion operations ar-
rive at an Alpha leader, it applies them in order, and
replicates them using Raft. Normally, once an oper-
ation is committed, Raft would ask the local node’s
state machine to apply that operation, obtaining a new
state. By applying operations to deterministic state
machines in the same order on every node, Raft ob-
tains identical states.

However, Dgraph’s state machine was not exactly de-
terministic: it applied some operations (notably, SP*
deletions), in goroutines, rather than in a single thread.
This meant deletions could be applied in different or-
ders relative to commits, resulting in different states
on different nodes. Dgraph added additional safety
checks to ensure that SP* deletions would properly
commute with other transactions’ updates.

4.6 Lost Inserts with Network Partitions

While Dgraph was fixing those read skew issues, we
uncovered a worse behavior: in pure insert workloads,
Dgraph could lose acknowledged writes during net-
work partitions. In set tests, which insert unique in-
teger values and attempt to perform a final read, huge
swaths of acknowledged values could be lost.

{:valid? false,
:lost
"#{140 149 151..155 169..174 176..178

183 186 189 191 196 200..201 203 206
208..210 212 214..227 229..237 242
244 251 254 257..259 261..262 265 267
269..271 277..278 461..466 469
472..473 475 477..483 488..489 491
494..495 497..498 502..505 507 510
512..513 516 518 521..522 525 528 532
537..538 541 544 547 550 675
685..686 688..690 2263 2266..2269
2272..2273 2275}",

:recovered "#{}",
:ok
"#{0 6 10 12 18 23 25 29 32 34 37..39

42 45 48 54 58 62..63 67 71 73 75
77 81 84 86 90 106 109..115 129
137 279 284}",

:recovered-frac 0,
:unexpected-frac 0,
:unexpected "#{}",
:lost-frac 127/2373,
:ok-frac 41/2373},

Dgraph returns UIDs for each successful insert, so

clearly some work has been done, but those records fail
to appear in later queries for all objects of type “ele-
ment”. When this occurs, CPU use on Dgraph jumps
to 100% for several minutes. To double-check that this
issue was not caused by deferred indexing, we designed
an alternate variant of the test which stores all ele-
ments on a single entity, removing the need for index
queries. This too lost writes.

This was caused in part by Dgraph failing to advance
read timestamps on leader changes; when new leaders
were elected due to network partitions, Dgraph nodes
could continue servicing reads below the new leader’s
Raft index. Dgraph fixed this issue in 1.0.5 by adding
additional checks on timestamps.

4.7 Indefinite Transaction Conflicts

That single-UID set test illustrated another unusual
failure mode for Dgraph: after network partitions, the
cluster could get stuck in a state where every transac-
tion writing a given key was forced to abort with a con-
flict, despite no apparent conflicting write transactions.
This state could persist for hours after the network par-
titions had ended, and did not appear recoverable.

This stemmed from the same bug which caused lost
inserts—transactions could obtain old read times-
tamps, rather than fresh ones, when a new Zero leader
was elected. Transactions would read from a time
hours in the past, go to commit, and discover that an-
other transaction (long since completed) had modified
their data during that time.

4.8 Unavailability with Network Partitions

Two other problems persisted in set tests. First, in-
dividual Dgraph nodes could lock up after partitions,
causing all client requests to time out indefinitely. Sec-
ond, partitions could push transaction timestamps far
into the future, such that every client request would
fail with an outdated timestamp. Clients would obtain
sequential timestamps in the past, which would incre-
ment slowly. When this occurred, clients could return
errors like

rpc error: code = Unknown desc = readTs:
13272 less than minTs: 30014 for key:
"\x00\x00\x04type\x02\x02element"

for hours, until their read timestamps caught up with
the stored timestamp for that key.

These issues were caused by improper tracking of clus-
ter leadership. Raft elects a series of leaders, each with

7

https://github.com/dgraph-io/dgraph/pull/2287/files#diff-fee8e1b519946bf53e9b97e08532221bR339
https://github.com/dgraph-io/dgraph/issues/2152
https://github.com/dgraph-io/dgraph/files/1745449/20180221T124736.000-0600.zip
https://github.com/dgraph-io/dgraph/pull/2261
https://github.com/dgraph-io/dgraph/pull/2261
https://github.com/dgraph-io/dgraph/pull/2261
https://github.com/dgraph-io/dgraph/pull/2261
https://github.com/dgraph-io/dgraph/issues/2159
https://github.com/dgraph-io/dgraph/issues/2159
https://github.com/dgraph-io/dgraph/pull/2261
https://github.com/dgraph-io/dgraph/issues/2273

a unique, monotonic term, for each cluster. In Dgraph,
there is (at any given point in time) a highest leader for
Zero, and a highest leader for each Alpha group. Zero
leaders keep track of leaders across all these clusters,
and stream that information asynchronously to each
Alpha node, so they can route queries to the appropri-
ate place. However, Zero proposed those leader transi-
tions within a goroutine. If two leader transitions oc-
cured in sequence, and the first transition’s goroutine
executed after the second, Alpha nodes would learn the
old, not the new leader, and be unable to make progress
until a new leader transition occurred. This issue was
fixed in 1.0.5.

4.9 Fragile Processes

We tested Dgraph with process crashes and restarts,
but these tests frequently failed, because Alpha nodes
would crash unexpectedly. If, on startup, Zero was un-
available, Alpha would retry for a short time, then kill
itself. This made recovering from failure complicated,
as nodes might appear to start correctly, then crash
minutes later. A service manager might also conclude,
from the repeated crashes, that Dgraph was perma-
nently broken and should not be restarted again with-
out operator intervention. Dgraph added a retry loop,
which allows Alpha to recover once Zero becomes avail-
able.

4.10 Write Loss on Node Crashes

When Alpha nodes crash and restart, our set test re-
vealed that small windows of successfully acknowl-
edged writes could be lost right around the time the
process(es) crashed. Dgraph also constructed records
with missing values, as we saw in the bank and delete
tests. Nodes would also disagree as to whether records
were missing—objects could be returned from queries
made to some nodes, but not others.

Dgraph suggested this problem was due to client-side
sequencing, and that missing values might show up af-
ter a few seconds. Unfortunately, we found that miss-
ing values persisted even after all nodes had recovered
and the cluster had been stable for thousands of sec-
onds.

Worse yet, with server-side sequencing, Dgraph could
occasionally lose all but the most recent successfully in-
serted value, instead returning nil for tens of thou-
sands of records.

Losing all but the most recently inserted value is a sus-
picious bug to say the least, and its cause turned out

not to be a distributed systems problem at all! When
moving a predicate from one node to another, Dgraph
builds up a batch of triples belonging to that predicate,
before serializing them and sending the batch to the
predicate’s new node. However, the temporary data
structure for serialization received Go slices (i.e. point-
ers) to a mutable loop variable which identified the key
for that triple. This meant that before serialization,
every triple shared the most recently iterated key—
effectively overwriting every previous key in that batch.
Copying the key variable, instead of passing a refer-
ence, resolved this issue.

This problem was exacerbated by a bug in client-side
sequencing. When an Alpha node responds to a query,
it includes a logical clock (the Raft index) of its cur-
rent state. Clients use that clock to ensure that future
reads against that Alpha group are monotonic. How-
ever, Alpha applies Raft updates asynchronously. Al-
pha originally returned an index based on the highest
contiguously applied update. However, if the current
transaction wrote data, then those writes may have
taken effect at a higher Raft index than the local server
has actually applied. This meant that a client could
write some data in one transaction, and in a subse-
quent transaction, fail to observe its own writes. The
fix is simple: Alpha now returns the highest contigu-
ously applied update, or the last index of the transac-
tion; whichever is higher.

4.11 Unavailability after Crashes

Process crashes also induced another type of down-
time: nodes could return timeouts for all requests, de-
spite every Alpha and Zero node running, and with
total network connectivity. This unavailable con-
dition would persist indefinitely, with Alpha nodes
complaining WARNING: We don't have address of
any dgraphzero server.

This error message was slightly misleading. In this
scenario, Alpha nodes could connect to Zero, but were
unaware of which Zero node was the leader. Although
Zero streams the current Zero leader to each Alpha
node, if an Alpha node were unreachable during a
leader transition, that Alpha node would never receive
the message about the new leader.

Dgraph resolved this issue by pushing Zero leader in-
formation to Alpha nodes periodically, so that isolated
nodes would hear about any leader transitions that oc-
curred in their absence.

8

https://github.com/dgraph-io/dgraph/pull/2319
https://github.com/dgraph-io/dgraph/pull/2319
https://github.com/dgraph-io/dgraph/issues/2289
https://github.com/dgraph-io/dgraph/issues/2289
https://github.com/dgraph-io/dgraph/pull/2307/files
https://github.com/dgraph-io/dgraph/issues/2290
https://github.com/dgraph-io/dgraph/issues/2290#issuecomment-379829768
https://github.com/dgraph-io/dgraph/issues/2290#issuecomment-379829768
https://github.com/dgraph-io/dgraph/commit/3673f504a#diff-2b55827ac83d2813e396b4495a660154R139
https://github.com/dgraph-io/dgraph/commit/978c7498a46cdbce593245bda65336b0deb789a4#diff-1cad31099966efb667abba7d5a80212d
https://github.com/dgraph-io/dgraph/commit/978c7498a46cdbce593245bda65336b0deb789a4#diff-1cad31099966efb667abba7d5a80212d
https://github.com/dgraph-io/dgraph/issues/2312
https://github.com/dgraph-io/dgraph/commit/b8c090884d0e8ecc3eac7cb18aef631abdf0b662
https://github.com/dgraph-io/dgraph/commit/b8c090884d0e8ecc3eac7cb18aef631abdf0b662

4.12 Segfault on crashes

In addition to locking up, Alpha nodes could segfault
when other processes crash. As with some of the
bugs we discovered in the cluster join process, nodes
which received requests shortly after restarting could
attempt to handle those requests before fully initializ-
ing their local state, resulting in a null pointer deref-
erence. Adding default values to functions involved in
the current cluster state resolved the issue.

4.13 Migration Read Skew &Write Loss

Even after the patches for server-side ordering and
with @upsert schemas for keys, Dgraph continued to
exhibit occasional anomalies in the bank test. After
a few minutes of normal operation, without any net-
work or node failures, the total of all account balances
would fluctuate up or down. Reads might observe ac-
counts in the middle of transfer transactions with in-
valid balances—for instance, a test starting with $100
could appear to contain $102 instead:

:value {0 45, 1 2, 2 1, 3 6, 4 10, 5 7,
6 29, 7 2}

… or show accounts with missing keys:

:value {nil 3, 0 1, 1 15, 2 18, 3 5, 4 9,
5 17, 6 23, 7 12},

… or even missing balances, despite the fact that we
never construct a record without a balance. In this
read, $96 of an original $100 has evaporated, leaving
only $4 in account 2.

{0 nil, 1 nil, 2 4, 3 nil, 4 nil, 5 nil,
6 nil}

Since improper account totals persisted for long du-
rations, we suspect that these illegal reads were also
promoted, by way of transfer transactions, back into
the database state—permanently creating or deleting
money.

To illustrate this, we can plot the total of all account
balances over time, as observed by transactional reads
of all accounts. Colors denote the node queried for each
read. In a snapshot isolated system, every read should
return 100; however, in this test run, we abruptly lose
70–80% of our account balances, and reads on all nodes
fluctuate between two different totals for several min-
utes, before devolving into chaos.

Figure 1: Plot of account totals over time, by node. After a predicate move, 70-80% of account balances appear
to disappear, and reads fluctuate between two stable values for several minutes.

Reading alternating values over time could conceiv-
ably occur in a snapshot-isolated system if some (but
not all!) reads from the same client observed a pre-
vious state in time. However, other test runs under
similar conditions show what appear to be two inde-

pendently evolving states of the system of accounts.
In other databases, we might suspect split-brain, but
here, both “worlds” appear visible to every node. We
still don’t understand this phenomenon.

9

https://github.com/dgraph-io/dgraph/issues/2322
https://github.com/dgraph-io/dgraph/pull/2336/files#diff-f05f62533c1a22a5df9079cd21742f1a
https://github.com/dgraph-io/dgraph/issues/2321
https://github.com/dgraph-io/dgraph/files/1916469/20180416T111943.000-0500.zip
https://github.com/dgraph-io/dgraph/files/2027603/20180522T110600.000-0500.zip
https://github.com/dgraph-io/dgraph/files/2027603/20180522T110600.000-0500.zip

Figure 2: Plot of account totals over time. The system appears to split into two independently evolving worlds.

The start of these anomalies corresponds with Dgraph
performing a routine migration of a predicate from one
group of nodes to another—although anomalies persist
indefinitely after the migration is complete. Moreover,
the fact that we can observe missing values suggests
that the problem is worse than simple read skew. We
devised a nemesis6 to stress predicate migration, and
were able to reproduce this behavior much faster.

And we found something worse.

With server-side ordering, @upsert on schemas, and
no crashes or network faults; e.g. in normal operation
with the strongest possible settings, Dgraph would
spontaneously lose successfully acknowledged inserts
in the set test every few hours. As with the bank test,
this behavior occurs when predicates are migrated. If
we schedule partition migrations roughly every 15 sec-
onds, Dgraph could reliably lose all but the most re-
cently acknowledged insert in 60 seconds, returning
hundreds of nil values instead.

{:ok-count 1,
:valid? false,
:lost-count 496,
:lost
"#{0 3 5..7 9 11..12 ... 1275 1277 1279}",
:acknowledged-count 497,
:recovered "#{}",
:ok "#{1284}",
:attempt-count 1293,
:unexpected "#{nil}",
:unexpected-count 1,

:recovered-count 0},

This was the same same bug we observed with node
crashes, but since migrations exercise the predicate se-
rialization path heavily, they were especially likely to
lose all but one record. This was fixed in 1.0.5.

Our data loss problem also involved a distributed race
condition in Zero’s commit path. If a transaction at-
tempts to commit twice (say, because of a leader tran-
sition, or an internal retry), one of those commit at-
tempts might abort, and journal that abort to Raft,
while the second attempt could succeed, and journal
that success to Raft as well. In this case, the second
attempt would only verify that Raft had acknowledged
the commit message, and wouldn’t check to see if an
earlier abort had already taken place. Dgraph fixed
this by checking the transaction status after writing
the commit to Raft, and before finalizing the commit.

In addition, a race condition between updates and
predicate moves allowed Zero to commit transactions
without checking to see if the affected predicates were
being moved to other nodes. Zero now checks to ensure
predicates aren’t being moved as a part of the commit
algorithm, and before moving a predicate, cancels any
pending transactions as well.

4.14 Predicate Move Outages

Testing the fixes for migrations revealed an unusual
failure mode: a predicate move could cause an Alpha

6In the Jepsen testing library, a nemesis introduces faults into a distributed system.

10

https://github.com/dgraph-io/dgraph/issues/2338
https://github.com/dgraph-io/dgraph/commit/3673f504a#diff-2b55827ac83d2813e396b4495a660154R139
https://github.com/dgraph-io/dgraph/pull/2339
https://github.com/dgraph-io/dgraph/pull/2339
https://github.com/dgraph-io/dgraph/commit/339c47e0e6bf99da52821ae9d1b1da97e70161fe
https://github.com/dgraph-io/dgraph/commit/339c47e0e6bf99da52821ae9d1b1da97e70161fe
https://github.com/dgraph-io/dgraph/issues/2397
https://github.com/dgraph-io/dgraph/issues/2397

node to crash, and that crash would leave the rest of
the cluster in a permanently unavailable state.

In this case, all requests to non-failing nodes would
return UNAVAILABLE, as both Alpha and Zero nodes

spun indefinitely, trying to establish a connection to
the crashed node. Requests to the crashed node would
time out. While Zero would respond to queries for
the current cluster state, any attempt to make further
predicate moves would time out as well.

Figure 3: Plot of operation latencies over time. One node crashed at 140 seconds, taking down the cluster for
the remainder of the test.

This problem arose because Dgraph would return
deleted or expired values when iterating over storage,
and return values which should have been overridden
by a delete. Dgraph’s integration tests had already
identified this issue, and fixes are present in master.

4.15 Nonsequential Client-Side Sequencing

We developed the sequential test to check whether
client-side sequencing ensures that clients observe

monotonic states of the system. Dgraph’s design con-
cept documentation explains that clients keep a map
of Alpha groups to the highest index they’ve observed
on that group:

In short, this map ensures that updates
made by the client, or seen by the client,
would never be unseen; in fact, they would
be visible in a sequential order.

11

https://github.com/dgraph-io/dgraph/issues/2397
https://github.com/dgraph-io/dgraph/files/2013106/20180516T194304.000-0500.1.zip
https://github.com/dgraph-io/dgraph/commit/7f21b825713ea0e1d668bd9fec52debb457a79d5
https://github.com/dgraph-io/dgraph/commit/7f21b825713ea0e1d668bd9fec52debb457a79d5
https://github.com/dgraph-io/dgraph/commit/7205275cc2f66a974febf78a812f9a1ef30243db
https://github.com/dgraph-io/dgraph/commit/7205275cc2f66a974febf78a812f9a1ef30243db
https://docs.dgraph.io/master/design-concepts/

We expect that with client-side sequencing, different
clients will read different points in time. However,
each client should (independently) move forward in
time, never backwards. Unfortunately, our sequential
test revealed that in Dgraph 1.0.4, clients could ob-
serve newer, then older, states of the system. We mea-
sure this by incrementing (and never decrementing)
a register—clients should observe that the register’s
value always rises, but instead, clients could see the
value go down if predicates are allowed to move from
group to group.

As discussed earlier, forgetting to make a transac-
tion’s own mutations visible to subsequent operations
from that client could allow clients to observe non-
monotonic states, but fixing that only reduced the
severity of non-monotonic histories, and did not elim-
inate the problem. Dgraph also needed to fix a race
condition between predicate moves and commits, and
avoid returning deleted or expired triples.

4.16 Indefinite Periods of Query Timeouts

While confirming fixes for set tests, we discov-
ered a new behavior: Dgraph clusters could lock
up indefinitely when an automatic predicate migra-
tion occurred during a large read-write transaction.
When the predicate move started, all transactions in
progress would time out, and any future transactions
would also time out. This condition could persist for
hours, and affected the entire cluster. Dgraph is still
investigating.

4.17 Read Skew In Healthy Clusters

As Dgraph addressed read skew issues caused by pred-
icate migration, we began to observe bank test fail-
ures without any migration, or even any failures at all.
Dgraph could still return incorrect account totals, or
records with missing values.

During some types of network partitions, Dgraph could
exhibit what appeared to be a read-only anomaly on
isolated nodes—reads on that node could jump up or
down, while reads against the rest of the cluster re-
mained at the correct total.

However, read skew is not limited to read-only trans-
actions, nor does it require network partitions. With-
out predicate migrations, crashes, partitions, or any
other failures, healthy Dgraph clusters can exhibit per-
sistent read skew anomalies. In fact, these issues occur
even in single-node clusters.

This suggests that there may be multiple unresolved is-
sues in Dgraph’s snapshot isolation protocol. Dgraph
is still investigating.

12

https://github.com/dgraph-io/dgraph/issues/2358
https://github.com/dgraph-io/dgraph/issues/2358
https://github.com/dgraph-io/dgraph/files/1945329/20180424T215433.000-0500.zip
https://github.com/dgraph-io/dgraph/files/1945329/20180424T215433.000-0500.zip
https://github.com/dgraph-io/dgraph/commit/978c7498a46cdbce593245bda65336b0deb789a4#diff-1cad31099966efb667abba7d5a80212d
https://github.com/dgraph-io/dgraph/commit/978c7498a46cdbce593245bda65336b0deb789a4#diff-1cad31099966efb667abba7d5a80212d
https://github.com/dgraph-io/dgraph/commit/339c47e0e6bf99da52821ae9d1b1da97e70161fe
https://github.com/dgraph-io/dgraph/commit/339c47e0e6bf99da52821ae9d1b1da97e70161fe
https://github.com/dgraph-io/dgraph/commit/7f21b825713ea0e1d668bd9fec52debb457a79d5
https://github.com/dgraph-io/dgraph/issues/2405
https://github.com/dgraph-io/dgraph/issues/2405
https://github.com/dgraph-io/dgraph/issues/2391

Figure 4: Total balance over time, by node, in a healthy cluster with no faults. Node n1 shows incorrect reads.

Figure 5: Total balance over time, by node, in a healthy cluster with no faults. The value abruptly jumps at 240
seconds, and fluctuates between two incorrect values.

5 Discussion

We identified multiple safety and liveness issues in
Dgraph 1.0.2 through 1.0.6, including lockups and
crashes in cluster join and node recovery, duplicate
upserts, non-monotonic reads, snapshot isolation vio-
lations, inconsistent indices, records with missing val-
ues, and even lost inserts. Some of these issues, in-
cluding write loss, could occur in healthy clusters with
no faults. Note that predicate moves occur in healthy
clusters, as Dgraph automatically rebalances data.

We wish to emphasize that Dgraph involved Jepsen
quite early in their release process—Dgraph is barely
two years old. The transaction system was initially
built in two months, released in November 2017, and
has only had nine months of polish since. We expect
to find lots of bugs at this stage. It’s hard to build a
transaction system in that short a time frame, not only
because of the engineering work involved, but also be-
cause users haven’t had sufficient time to encounter,
detect, and report bugs.

13

https://blog.dgraph.io/post/v0.9/

Moreover, we note that Dgraph has done this work en-
tirely in public, with full issues and commit logs avail-
able for everyone to review. While there is still work

to be done, we are heartened by Dgraph’s commitment
to improvement.

№ Summary Event Required Fixed In

2137 Join deadlock Join 1.0.4
2138 Join segfault Join 1.0.4
2143 Read skew, corrupt writes None 1.0.5
2145 Join deadlock Join 1.0.5
2148 Partially deleted records None 1.0.5
2149 Duplicate upserts None 1.0.4
2152 Loss of all but one insert Partition 1.0.5
2159 Indefinite false conflicts Partition 1.0.5
2273 Single node deadlock Partition 1.0.5
2286 Join deadlock Join 1.0.7
2289 Crash on startup Zero unavailable 1.0.5
2290 Lost inserts Crash 1.0.5
2312 Total Deadlock Crash 1.0.5
2321 Read skew, corrupt records Crash or predicate move Unresolved
2322 Segfault on startup Crash 1.0.5
2338 Lost inserts Predicate move 1.0.6?
2358 Per-client non-monotonicity Predicate move 1.0.6?
2376 Join deadlock Join Unresolved
2377 Integers inferred as floats No schema 1.0.6?
2378 Integers coerced to floats Int schema 1.0.6?
2391 Read skew, corrupt records None Unresolved
2397 Crash, total outage on pred. move Predicate move 1.0.6?
2405 All queries time out indefinitely Predicate move Unresolved

5.1 Recommendations

Dgraph has made extensive progress this year, and ad-
dressed 19 of the 23 issues we identified. However, sig-
nificant problems remain: Dgraph clusters can exhibit
read skew and corrupt records even in healthy clusters
with no faults. We recommend that users upgrade to
version 1.0.6 or higher: while it does not address all is-
sues, it does offer offer significant safety improvements
over previous releases.

For performance reasons, Dgraph does not default to
the safest possible settings. Users should consider the
use of @upsert schemas and server-side sequencing
carefully.

With respect to upserts: Dgraph’s data model identi-
fies entities by an autogenerated UID, but users may
want to identify entities by some other primary key,
e.g. an attribute like an email address or username. By
default, Dgraph will not enforce transactional isolation
for indices on these keys, which could allow users to up-
sert multiple copies of the same record, or, if the value
for that primary key ever changes, to fail to observe
the correct UID for that key. To prevent these prob-

lems, we recommend the use of the @upsert schema
directive on any predicates which will be used as pri-
mary keys.

Dgraph has two methods for enforcing orders over
transactions: client-side (where clients track Raft off-
sets for each group), and server-side sequencing (where
servers check with the Zero leader to ensure mono-
tonicity). With client-side sequencing, clients may ob-
serve stale data, rather than the most recent state.
Server-side sequencing prevents many anomalies, but
we have not developed a rigorous formalization of its
guarantees.

Dgraph plans to remove client-side sequencing alto-
gether, instead relying on the server-side ordering
mechanism. Clients will likely track logical transac-
tion timestamps, rather than low-level Raft offsets.

5.2 Comments & Future Work

While Dgraph adapted their transactional scheme
from Omid, Reloaded, they chose to avoid relying on
an external consensus service: Omid uses Zookeeper,

14

https://github.com/dgraph-io/dgraph/issues/2137
https://github.com/dgraph-io/dgraph/issues/2138
https://github.com/dgraph-io/dgraph/issues/2143
https://github.com/dgraph-io/dgraph/issues/2145
https://github.com/dgraph-io/dgraph/issues/2148
https://github.com/dgraph-io/dgraph/issues/2149
https://github.com/dgraph-io/dgraph/issues/2152
https://github.com/dgraph-io/dgraph/issues/2159
https://github.com/dgraph-io/dgraph/issues/2273
https://github.com/dgraph-io/dgraph/issues/2286
https://github.com/dgraph-io/dgraph/issues/2289
https://github.com/dgraph-io/dgraph/issues/2290
https://github.com/dgraph-io/dgraph/issues/2312
https://github.com/dgraph-io/dgraph/issues/2321
https://github.com/dgraph-io/dgraph/issues/2322
https://github.com/dgraph-io/dgraph/issues/2338
https://github.com/dgraph-io/dgraph/issues/2358
https://github.com/dgraph-io/dgraph/issues/2376
https://github.com/dgraph-io/dgraph/issues/2377
https://github.com/dgraph-io/dgraph/issues/2378
https://github.com/dgraph-io/dgraph/issues/2391
https://github.com/dgraph-io/dgraph/issues/2397
https://github.com/dgraph-io/dgraph/issues/2405
https://docs.dgraph.io/master/howto/#a-simple-login-system
https://docs.dgraph.io/master/howto/#a-simple-login-system

but Dgraph includes multiple built-in Raft clusters.
This approach simplifies Dgraph operations, but adds
internal complexity. Conversely, Dgraph, like Omid,
chooses to use Raft more as a consensus service, rather
than allowing Raft to control the entire Dgraph state
machine. This allows Dgraph’s state machine to ex-
ecute operations in parallel, improving performance,
but that concurrency introduced subtle nondetermin-
ism and race conditions. Negotiating the balance of
performance, operational complexity, and algorithmic
simplicity remains a difficult challenge for distributed
systems engineers.

Keeping track of leaders has led to liveness and safety
issues for many systems Jepsen has analyzed, and
Dgraph is no exception: we found several bugs caused
by cases where nodes could not identify a leader, or be-
lieved the wrong node was the current leader. While
Raft provides a well-behaved leader election system
with understandable invariants, keeping track of lead-
ers externally to Raft, and managing the relation-
ships between multiple Raft clusters, proved difficult.
While timeouts, stepping down, and streaming clus-
ter state updates can mitigate these issues, we sug-
gest that implementers ensure every node can safely
handle requests intended for a leader, and that non-
commutative operations performed by old leaders are
correctly rejected by peers. Assuming a “leader” node
is authoritative, or that there can only be one leader at
a time, often proves dangerous.

Many of the problems we found in cluster join are
essentially race conditions with uninitialized state:
Dgraph nodes would accept requests concurrently with
the node initialization process, then deadlock or seg-
fault when request handlers observed invalid initial
state. These problems can be addressed by forcing
initialization to complete before listening, but Dgraph
opted for a more robust approach, adding sensible de-
fault values for uninitialized nodes.

The availability issues we found—crashing on startup,
or failing to broadcast leader state periodically—may
reflect a lack of hours-in-production; these errors are
easy to detect once the requisite failure conditions have
occurred, and the underlying bugs are straightforward
to fix. In general, this points to the importance of recon-
ciliation loops: systems which experience partial fail-

ure can adapt by having a goal state, and a process
which continuously attempts to make progress towards
that goal.

We have not yet investigated filesystem-level errors,
but Dgraph has tested their storage system for crash
consistency using ALICE. We have not tested Dgraph
with clock skew, which could impact Dgraph’s timeout-
based lease allocation system. We would also like to
formalize Dgraph’s real-time constraints on snapshot
isolation, and to develop more rigorous tests for those
properties.

Dgraph includes two distinct subsystems: Alpha, and
Zero. Our tests colocated a Zero node with each Al-
pha node, and partitioned nodes from other nodes in
total. This means that in any given network config-
uration, Alpha and Zero share the same set of visi-
ble nodes, and the same majority & minority network
components. We rarely obtain cases where a majority
Alpha component can only interact with, say, an out-
dated Zero leader in a minority Zero component. In fu-
ture testing, we would like to separate Alpha and Zero
nodes, and introduce different network fault topologies
on each, to explore more of the state space.

We developed tests for Dgraph’s linearizability, but
have not fully investigated whether server-side order-
ing actually provides linearizability, or allows some
non-linearizable anomalies, such as stale reads. Since
Dgraph is still struggling to provide snapshot isolation,
these tests would be premature, but we think they’ll be
useful down the road. We would also like to clarify the
scope of monotonicity with respect to client- and server-
side sequencing: are only transactions on the same
keys ordered? What about transactions with overlap-
ping, or disjoint keys? These remain topics for future
research.

This work was funded by Dgraph, and conducted in ac-
cordance with the Jepsen ethics policy. Jepsen wishes
to thank the entire Dgraph team for their invaluable
assistance, especially Manish Jain, Pawan Rawal, &
Janardhan Reddy. Peter Alvaro gave advice on con-
sistency levels, and extensive feedback on this report.
We are also grateful to Marc Hedlund, Sarah Huffman,
Tim Kordas, & Camille Fournier for their feedback on
early drafts.

15

https://github.com/dgraph-io/tove
https://dgraph.io/
https://jepsen.io/ethics.html

	Errata
	Background
	Consistency
	Algorithm

	Test Design
	Set
	Upsert
	Delete
	Bank
	Long Fork
	Sequential

	Results
	Schema issues
	Cluster Join Issues
	Duplicate Upserts
	Delete Anomalies
	Read Skew
	Lost Inserts with Network Partitions
	Indefinite Transaction Conflicts
	Unavailability with Network Partitions
	Fragile Processes
	Write Loss on Node Crashes
	Unavailability after Crashes
	Segfault on crashes
	Migration Read Skew & Write Loss
	Predicate Move Outages
	Nonsequential Client-Side Sequencing
	Indefinite Periods of Query Timeouts
	Read Skew In Healthy Clusters

	Discussion
	Recommendations
	Comments & Future Work

