JEPSEN

Aerospike 3.99.0.3

Kyle Kingsbury
2018-03-07

Aerospike is a high-performance distributed document store. Following up on our 2015 analysis, we explored
Aerospike’s new strong-consistency mode, which offers linearizable operations on single records. We confirmed
two documented flaws in Aerospike’s homegrown replication algorithm. First, it can lose updates when more
than k nodes crash (either concurrently or in sequence). Second, when either process pauses or clock skew exceed
27 seconds, Aerospike could lose committed updates. Aerospike has added an option in 3.99.2.1 which prevents
write loss on crashes, and plans to increase the amount of clock skew or pause before data loss can occur. We also
discovered a previously unknown issue where Aerospike could inform a client that a write did not succeed when,
in fact, it had; this was fixed in 3.99.1.5. With these fixes in place, Aerospike does appear to provide linearizability
through network partitions and process crashes, but data loss due to process pauses and clock skew remains.
Aerospike has published a companion post, and made binaries available for reproducing these results. This work
was funded by Aerospike, and conducted in accordance with the Jepsen ethics policy.

1 Backg round with many other CP databases, clients may select be-
tween potentially stale reads or, at the cost of an extra
round trip, fully linearizable reads. We redesigned and
expanded the Jepsen test suite from 2015 to explore

linearizable behavior in 3.99.0.3 through 3.99.2.1.

Aerospike, formerly Citrusleaf, is a distributed,
sharded document store designed for high-throughput,
low-latency applications. Each record is a map of keys
to values, which may be either primitive types (inte-
gers, strings, bytes, etc.) or nested collections like
lists and maps. Secondary indices are also available
for strings and integers. Operations on these records
include reads, writes, compare-and-set, and datatype-
specific transformations like list append.

1.1 AP mode

In the 2015 analysis, we found that despite claiming to
be an “ACID” database, in the event of network parti-
tions, Aerospike could expose stale versions of records,
lose linearizable updates, and even lose commutative

Historically, Aerospike has only offered a totally-
updates such as counter increments.

available (AP) mode, resolving conflicts via wall-clock

timestamps or the replica which has seen the greatest The 2015 analysis spurred Aerospike to re-evaluate

number of writes. We tested Aerospike 3.5.4 in 2015,
and found that both of these strategies allowed stale
reads, dirty reads, and lost updates during network
partitions.

In the fall of 2017, Aerospike requested a followup anal-
ysis covering their new strong consistency (SC) mode,
scheduled for release in 4.0. SC mode offers per-key
linearizable updates on a per-namespace basis, in ex-
change for reduced availability during failures. As

their engineering process. Instead of focusing on fea-
ture development, they took time to redesign and over-
haul core components: improving inter-node messag-
ing performance, preventing permanent split-brain af-
ter transient network interruption, reducing traffic
used in shard! rebalancing after a partition by two or-
ders of magnitude, and so on.

These improvements enabled the development of SC
mode in 2017, but also significantly improved life for

IWe call an Aerospike “partition” a “shard”, to prevent confusion with network partitions. We refer to Aerospike “masters” and “proles”

as “primaries” and “secondaries”. We call a collection of Aerospike nodes which could communicate a “cluster”; Aerospike has no dedicated
term for this concept. Aerospike uses both “cluster” and “sub-cluster” to refer to group(s) of nodes which can currently exchange messages;
we use “sub-cluster” for this concept.


https://aphyr.com/posts/324-jepsen-aerospike
https://www.aerospike.com/blog/aerospike-4-strong-consistency-and-jepsen/
https://www.aerospike.com/benchmarks/jepsen/
https://www.aerospike.com/
https://jepsen.io/ethics.html
https://www.aerospike.com/
https://www.aerospike.com/technologies/#technology-architecture
https://www.aerospike.com/docs/architecture/data-model.html
https://www.aerospike.com/docs/architecture/secondary-index.html
https://www.aerospike.com/docs/guide/cdt-list.html
https://aphyr.com/posts/324-jepsen-aerospike

AP users. For instance, performing a rolling restart
of an Aerospike cluster without waiting for all shards
to migrate could result in lost updates. Overhauling
the partition rebalancing system meant that in newer
releases of Aerospike, users could restart a new node
as soon as the old one had come back into the cluster,
and add new nodes to the cluster without temporar-
ily reducing durability. AP users also benefited from
a redesign of the migration system to properly handle
overlapping migration rounds, while improving perfor-
mance. The introduction of tombstones also made it
possible to delete records without them reappearing
during partitions or cold starts. Migrating data be-
tween mostly-full shards is dramatically faster with
the introduction of delta migrations.

Despite these improvements, Aerospike’s documenta-
tion continued to be somewhat vague with respect to
consistency issues until January 2018. The FAQ accu-
rately explains that records with more changes will be
preferred over those with fewer:

By default, Aerospike uses a generation
counter to determine which of 2 values for
a key is the correct one. It will choose the
value that has a higher generation count.

. and the ACID documentation went on to say that
Aerospike is an AP system in CAP terms: on asyn-
chronous networks, every request to a non-faulty
node should complete successfully.? This implies that
Aerospike cannot provide linearizability, serializabil-
ity, snapshot isolation, or repeatable read.

As we previously discussed, Aerospike’s AP system will
readily lose committed updates in the event of parti-
tions; however, so long as the network does not fail,
Aerospike can (like all databases) ensure consistency.
Aerospike’s documentation called this approach “high
consistency”, essentially arguing that partitions are
rare enough to not be a significant concern:

The Aerospike AP system provides high
consistency by

* Restricting communication laten-
cies between nodes to the [sic] sub-
millisecond.

As we found in 2015, Aerospike’s aggressive timeouts
actually make it more sensitive to transient network
degradation, increasing the probability of data loss.
The docs also claimed Aerospike ensured consistency
by...

¢ Eliminating partition formation.

It remains unclear how database software can prevent
networks and nodes from delaying or dropping mes-
sages.

¢ Providing automatic conflict resolu-
tion to ensure that during cluster for-
mation, new data overrides old data.

As we saw in 2015, Aerospike’s automatic conflict reso-
lution strategies (last-write-wins merge by local times-
tamp, and max-updates-wins) can also do the exact op-
posite, preserving old data in favor of new data. Even
when conflict resolution does work correctly, it will not
prevent lost updates: clients on both sides of a parti-
tion can independently read, modify, and write back
data without seeing each other’s changes.

Aerospike’s consistency guarantees documentation
went on to claim that users “can guarantee complete
data consistency by involving all replicas of a record
during each transaction”. However, Aerospike’s team
confirms that using consistency level all does not
prevent consistency anomalies—only reduce their fre-
quency.

These documentation errors were quickly addressed,
and Aerospike’s web site now accurately describes the
current AP behavior.

To recap: AP mode’s guarantees are largely un-
changed: stale reads, dirty reads, and lost updates are
all possible in the face of partitions. However, as a re-
sult of their engineering work over the past three years,
Aerospike anecdotally reports meaningful reductions
in the frequency and magnitude of these anomalies.

Moreover, AP mode remains appropriate for many
types of workloads, especially those which are latency
sensitive or geographically distributed, where through-
put is critical, the importance of individual records is
low, contention is limited, or in-place modification of
data is infrequent.

However, some users do need stronger guarantees. For
that, Aerospike 4.0 will offer SC mode.

1.2 SC Mode

Aerospike targets the edge of the performance enve-
lope: systems which would not be cost-effective with
a typical database.? For instance, telecom data and

2Strictly speaking, not every request is guaranteed to succeed; there is usually a brief window after failure where a few operations may

time out or fail, before the cluster stabilizes.

3Documentation for SC mode is not yet public; this section describes Aerospike’s behavior based on early-access and Aerospike-internal

documents, and discussions with the development team.


https://www.aerospike.com/docs/guide/FAQ.html
https://www.aerospike.com/docs/guide/FAQ.html
https://www.aerospike.com/docs/architecture/acid.html
https://www.aerospike.com/docs/architecture/acid.html
https://www.aerospike.com/docs/architecture/acid.html
https://www.aerospike.com/docs/architecture/consistency.html

web analytics can create enormous data volumes which
must be written in tight latency budgets. To meet
these goals, Aerospike makes some unconventional de-
sign decisions to improve latency and throughput.

First, while Aerospike does write records to disk for
durability, it does so asynchronously to improve la-
tency; at any given point, some committed transac-
tions are only stored in memory, not on disk. Con-
current crashes of more than replication-factor nodes
could cause the loss of committed writes.

Second, Aerospike opted to design two custom, over-
lapping coordination protocols for managing cluster
state and replicating data. The first system is loosely
adapted from Paxos, but it is decidedly not a consen-
sus system: it does not, for instance, guarantee agree-
ment on a single value, nor does it rely on a fixed
set of members. Rather, it provides rough agreement
among whoever showed up to the most recent round.
The goal of this system is to quickly establish a sub-
cluster—a set of nodes which are currently alive and
can see one another—and choosing a principal node
among them, which can serve as a coordinator. Multi-
ple sub-clusters may be active at any given time. This
system is the basis of both the AP and SC modes in
Aerospike.

On top of this gossip system, Aerospike’s SC mode lay-
ers a second, custom replication protocol which aims
to provide true consensus. For performance reasons,
it is not based on Paxos, Raft, Zab, or any established
consensus system. Why? Because most consensus sys-
tems use majority quorums, and require a majority of
nodes to make progress—this implies a minimum of
three replicas for any piece of data. Aerospike deploy-
ments are often constrained by storage costs: storing
three replicas of data, instead of two, might be too ex-
pensive to be practical. Therefore, Aerospike needs
to maintain availability through the loss of any single
node in a two-replica system.

Where most replication systems broadcast a mes-
sage to every node and commit once a majority have
acknowledged, Aerospike’s SC mode broadcasts to
replication-factor replicas (rather than all possible
replicas) and waits for unanimous acknowledgement
from those nodes before committing. Aerospike han-
dles failure by allowing that set of replicas to change,
provided certain invariants hold. For each shard,
given some set of statically computed roster replicas
which will store copies of that shard when the clus-
ter is healthy, and a roster primary which serves as
a tiebreaker, availability is preserved so long as there
exists some sub-cluster where:

1. A roster replica is present, and fewer than
replication-factor nodes are missing, or
2. There exists at least one full replica of that shard,
and either:
a. All roster replicas, or
b. At least one roster replica and a majority of
possible replicas, or
c. Aroster primary and exactly 1/2 of the clus-
ter

These rules allow for the failure or isolation of any sin-
gle node with a replication-factor of only 2, so long as
a majority of potential replicas are present to ensure
only one side of a partition can make progress.

Consider a cluster with three nodes: A, B, and C,
where replication-factor = 2. Aerospike might choose
nodes A and B as replicas, and therefore writes must
be acknowledged by both A and B before commit. Now
imagine A is partitioned away, leaving a sub-cluster of
B and C' connected. Since B and C form a majority
of the cluster, and a copy of every committed record is
present on B, C can become a temporary replica, al-
lowing the system to continue with two copies of every
write. A, being unable to reach B, cannot commit any
further writes. Without a majority, A is also unable to
elect a new set of replicas, which prevents divergence.
When the partition heals, B and C will bring A up to
date; once A has caught up, C can stop being a replica.

There are special rules governing what sub-clusters
are eligible to process requests, how to ensure reads
are up to date, merging partially divergent replicas,
tracking clean vs unclean shutdown, and so on, but
this is an essential sketch of 4.0’s SC mechanism. The
question, as usual, is: “does it work?”

2 Test Design

Our test suite for Aerospike uses the Jepsen testing
library, and expands on our work from 2015. We
check linearizable reads, writes, and compare-and-set
over single registers, each backed by a single record in
Aerospike. We test counters by performing continuous
increments and reads, ensuring that the counter value
remains within the lower and upper bounds given by
the number of successful and potential increments, re-
spectively. Finally, a new test, set, verifies that unique
integers appended to a single record can be read back
later.

We run Aerospike on a five node cluster of Debian
Jessie machines in EC2, with replication-factor 2 or
3. We enable strong-consistency for our namespace,


https://github.com/aerospike/aerospike-server/blob/8137e512e003b4034490730e7a63154ecf346f87/as/src/fabric/clustering.c#L64
https://github.com/aerospike/aerospike-server/blob/8137e512e003b4034490730e7a63154ecf346f87/as/src/fabric/clustering.c#L64
https://github.com/jepsen-io/jepsen
https://github.com/jepsen-io/jepsen
https://github.com/jepsen-io/jepsen/blob/938af47790a5f7899fe78f824b8adfa75d7ca8a2/aerospike/src/aerospike/cas_register.clj#L54-L71
https://github.com/jepsen-io/jepsen/blob/938af47790a5f7899fe78f824b8adfa75d7ca8a2/aerospike/src/aerospike/counter.clj#L51-L58
https://github.com/jepsen-io/jepsen/blob/938af47790a5f7899fe78f824b8adfa75d7ca8a2/aerospike/src/aerospike/counter.clj#L51-L58
https://github.com/jepsen-io/jepsen/blob/938af47790a5f7899fe78f824b8adfa75d7ca8a2/aerospike/src/aerospike/set.clj#L18-L36
https://github.com/jepsen-io/jepsen/blob/2ee5ec92cb6cf6d516ea4a3ea4a9a4387727487f/aerospike/resources/aerospike.conf#L56

and use linearizeRead in the client to ensure reads
go through consensus. Since the Aerospike client au-
tomatically routes requests to arbitrary nodes in the
cluster, we use a custom fork of the Java client which
binds each client to a single node. This makes it easier
to identify consistency errors that might be masked by
all clients routing requests to the same server.

We should note that our tests are illustrate worst-case
availability, simulating an environment where clients
can only reach one server. In normal production de-
ployments, clients may (depending on network topol-
ogy and server faults) be able to fail over to alternative
servers, improving effective availability.

Aerospike’s Java client throws exceptions for failure
conditions, with an error code that identifies the
type of error that occurred. Somewhat unexpectedly,
the client can throw exceptions with error code O:
AS_PROTO_RESULT_OK, a code which indicates success.
Users should be careful not to interpret these results

as OK; they are likely indeterminate failures. The
Jepsen client considers these errors indeterminate.

92

95

97

98 | write 0

99

Process Time —p»

Legal ==

3 Results

3.1 Dirty Reads After Partitions

In order to verify linearizability during network fail-
ures, we introduce both total and partial network par-
titions while performing reads, writes, and compare-
and-set operations on single registers. @ However,
Aerospike’s clustering algorithm requires unanimous
agreement between all nodes participating in a sub-
cluster, which implies that if if any node can see a dif-
ferent set of nodes than the nodes it’s connected to, no
sub-cluster can form, and all requests for data on af-
fected shards will fail. We therefore restrict ourselves
to total partitions, which Aerospike can handle.

Unfortunately, we encountered nonlinearizable histo-
ries in 3.99.0.3: after partitions, Aerospike would re-
turn apparently impossible values for reads. For in-
stance, the very first successful operation on a key
might be a read of, say, 2, when the value hadn’t even
been written yet. Or, as in this test, the value of key 9
could change from 0 to 4 with no concurrent write of 4.

write 3
cas [0 3]
cas [1 1]
read 4

lllegal == Crashed Op OK Op

In this case, process 98 wrote 0, just before a partition; processes 92, 95, and 97 crashed during that partition;
and process 99 read 4 just after the partition resolved. This makes no sense: where did 4 come from?

Critically, this visualization does not include failed operations. A careful investigation of the raw history reveals
that just prior to the read of 4, process 98 attempted to write 4, and received a failure code :unavailable:

{:type :invoke, :f :write, :value 4, :process 98,

{:type :fail, :f :write, :value 4, :process 98,
:error :unavailable}

{:type :invoke, :f :write, :value 1, :process 192,

{:type :fail, :f :write, :value 1, :process 192,

:error :unavailable}

‘time 23632780917}
:time 23633454385,

:time 23759768734}
:time 23760579493,


https://github.com/jepsen-io/jepsen/blob/2ee5ec92cb6cf6d516ea4a3ea4a9a4387727487f/aerospike/src/aerospike/support.clj#L352
https://github.com/jepsen-io/aerospike-client-java/commit/672977a82cc4f2113e1f633ad06885b278673997
https://www.aerospike.com/docs/dev_reference/error_codes.html
https://github.com/jepsen-io/jepsen/blob/c8348dc8b230fad58720d98c09a61717e9752109/aerospike/src/aerospike/support.clj#L471-L481
https://github.com/jepsen-io/jepsen/blob/c8348dc8b230fad58720d98c09a61717e9752109/aerospike/src/aerospike/nemesis.clj#L101-L102
https://github.com/jepsen-io/jepsen/blob/c8348dc8b230fad58720d98c09a61717e9752109/aerospike/src/aerospike/nemesis.clj#L101-L102
https://s3.amazonaws.com/jepsen.io/analyses/aerospike-3-99-0-3/20171114T193849.000Z-false-negatives.zip

{:type :invoke, :f :read,
{:type :0k, :f :read,

:value nil,
:value 4, :process 99,
Over many tests a pattern emerges: nonlineariz-
able operations usually occur during the first few
seconds after a partition has resolved. More-
over, those erroneous operations were typically reads
of a value that had been written before—except
that that write had failed with error code 11:
AS_PROTO_RESULT FAIL UNAVAILABLE, which indi-
cates that the given partition was not available for
writes.

This occurs because when Aerospike proxies writes
from one server to another, it may transparently retry
indeterminate failures like timeouts. It then returns
the most recent failure, not the most conservative fail-
ure. For instance, say a client issues a write to node A,
which proxies it to B, where it is applied. However, B’s
response is lost due to a network failure. A transpar-
ently retries, and the second time around, B responds
with a definite error: the partition is unavailable. A
dutifully relays this message to the client, saying that
the write was rejected, even though it successfully com-
pleted.

Proxies, in general, should not retry indeterminate op-
erations; with the exception of idempotent and commu-

:process 99,
:time 23931539207}

:time 23929420527}

tative structures like CRDTs, performing operations
multiple times could lead to unsafe effects. 3.99.1.5
fixes this problem by disallowing all proxy retries.*

With these patches in place, Aerospike handles
majority-minority partitions well. In 3.5.4’s AP mode,
Aerospike was immediately nonlinearizable and lost
counter updates. In hundreds of tests of SC mode
through network partitions, 3.99.1.5 and higher ver-
sions have not shown any sign of nonlinearizable his-
tories, lost increments to counters, or lost updates to
sets.

3.2 Node Crashes

To verify crash-safety, we introduce a mixture of po-
lite (SIGTERM) & impolite (SIGKILL) process crashes,
followed by process restarts.

An immediate problem arises when we crash
Aerospike nodes with SIGKILL: the concurrent failure
of replication-factor nodes takes down some fraction
of the keyspace indefinitely. The cluster will not re-
cover, even after nodes are restarted—some shards
will remain down indefinitely.

aerospile cas-register latency

10000 I ' ' ' 'cas ok
R .casinfo
1000 fo s | I:cas fail o
g rread ol
- 2 -read info
L read fail
£ 100 e b o Da‘ | o 1 write ok ;
g 2 ° # write info
5 10 | & . ] write fail o
T
—
1§ |
01 L L L L
0 500 1000 1500 2000 2500
Time (s)

Figure 1: Plot of operation latencies over time, showing more and more shards transitioning to a dead state.

This plot shows the gradual failure of more and more shards due to nodes crashing and restarting, until only

4There is an additional issue with Aerospike: the Java client, by default, will retry operations, which could lead to operations being
incorrectly applied multiple times, potentially losing updates. This is fixed in version 4.1.1 of the Java client, which defaults to no retries

for writes and queries. Jepsen disables all client retries for safety.


https://github.com/jepsen-io/jepsen/blob/938af47790a5f7899fe78f824b8adfa75d7ca8a2/aerospike/src/aerospike/nemesis.clj#L17-L58
https://github.com/aerospike/aerospike-client-java/commit/5056530587cd7bbc9daf3803d526220ee7e559cd

a few shards are left alive—operations occasionally succeed as the test rotates to new keys (and therefore new
shards) over time. During these failures, Aerospike will log messages like:

Nov 28 2017 20:32:34 GMT: WARNING (partition): (partition_balance_ee.c:649)
{jepsen} rebalanced: regime 119 expected-migrations (45,45) expected-signals 33

expected-appeals O dead-partitions 4029

Here, dead-partitions indicates that some shards
are unavailable. This occurs when Aerospike suspects
that data loss may have been possible and disables the
shard to prevent further problems.

In order for Jepsen to see whether data was lost, we
have to perform reads. That means we need to bring
those dead shards back online. We do this by issuing
a revive command: an explicitly unsafe operation avail-
able to operators for emergency recovery. With revives
and reclusters, we observe Aerospike losing updates
due to concurrent crashes, especially in set tests:

{:valid? false,
:lost "#{648..671}",
:recovered "#{251}",
1ok

"#{0..251 258..647 1415..2673 2675..2903}",
:recovered-frac 1/2904,
:unexpected-frac O,

:unexpected "#{",
:lost-frac 1/121,
:ok-frac 355/484%,

This occurs because Aerospike does not write records
to disk before acknowledging their successful commit
to the client. There is a short window of writes which
are resident only in memory, and those writes may be
lost if all current replicas of a given record crash con-
currently.

Like MongoDB, Aerospike made the decision to write
asynchronously for performance reasons—disk writes
impose a latency penalty. Their rationale is that mul-
tiple nodes provide redundancy against single-node
crashes, and concurrent crashes are relatively infre-
quent. However, rack and even datacenter-wide power
failures do happen from time to time®, and being able
to guard against that eventuality is helpful for some
users. Moreover, even sequential failures can result in
data loss, if they happen in quick succession.

{:valid? false,
:lost "#{69 109 169..194}",
:recovered "#{1770 2462 2634}",
:ok
"#{0..54 ... 2832..2937}",

:recovered-frac 3/2950,
:unexpected-frac O,
:unexpected "#{",
:lost-frac 14/1475,
:ok-frac 551/590%}},

Even though every node in this test was fully restarted
before another crashed, Aerospike still lost committed
updates. When a node restarts from an unclean shut-
down, it knows that it may have lost some data, and
sets an error flag to prevent it from acting as a nor-
mal, up-to-date replica. Any committed write must
be present on at least replication-factor replicas, and
should be recoverable by contacting one of those other
replicas. However, clearing the error flag allows the
original replica to act authoritatively again, and if the
other, truly up-to-date replicas are inaccessible (due to
e.g. partition or crash), then Aerospike could use the
original node’s obsolete data as the basis for future
updates—causing lost writes.

To handle this issue, Aerospike has added an optional
feature to ensure writes are flushed to disk before ac-
knowledging them. This feature is present in 3.99.2.1
and higher. With it enabled, node crashes no longer
trigger data loss.®

{:valid? true,
:lost {3,
:recovered "#{201}",
1ok

"#{0..201 206 209 212..238 240..246
248..268 546 549 551 602..682 686
689 921 925 998..1016 1018..1060
1064 1233..1278 1743 1769}",

:recovered-frac 1/1978,
:unexpected-frac 0,
:unexpected "#{r",
:lost-frac 0,
:ok-frac 229/989}}

3.3 Wall Clocks

We also introduce clock skew over randomized nodes.
We use two strategies for adjusting clocks:

either

5Currently, Aerospike may locate all replicas of a given shard on nodes in a single rack. Aerospike plans to add rack-aware replica

placement in an upcoming release.

8 Aerospike is also working to improve recovery safety for sequential crashes.


https://s3.amazonaws.com/jepsen.io/analyses/aerospike-3-99-0-3/20180111T013205.000Z-concurrent-crash-data-loss.zip
https://s3.amazonaws.com/jepsen.io/analyses/aerospike-3-99-0-3/20180111T015212.000Z-single-node-crashes-data-loss.zip
https://s3.amazonaws.com/jepsen.io/analyses/aerospike-3-99-0-3/20180111T015212.000Z-single-node-crashes-data-loss.zip
https://github.com/jepsen-io/jepsen/blob/c8348dc8b230fad58720d98c09a61717e9752109/aerospike/src/aerospike/nemesis.clj#L110-L112

bumping the clock once by a random offset (millisec-
onds to minutes), or strobing the clock back and forth
between two monotonically advancing times at a high
(~milliseconds) frequency. The latter is useful for trig-
gering timeouts early on selected nodes, and for con-
fusing short-term latency measurements in code that
doesn’t use CLOCK_MONOTONIC. Neither of these ran-
domized schedules revealed safety violations, though
they frequently induced downtime—Aerospike pauses
writes on nodes which, based on heartbeats, diverge by
more than 25 seconds from other nodes in the cluster.

The fact that we didn’t observe consistency errors with
a randomized test schedule does not, however, imply
that Aerospike is necessarily safe. There is a theoret-
ical weakness in Aerospike’s replication scheme—one
which Aerospike was aware of and factored into their
design. To understand this vulnerability, we need to
discuss the SC algorithm in more detail.

Successive configurations of replicas are linked to-
gether with a sequence number called the regime,
which is chosen as a part of each SC election. Regimes
are incorporated into a clock structure which is associ-
ated with every record, and used to determine which
version of a record is most recent.

clock = [regime, wall-clock, counter]

Ordinarily, these clocks would be compared by regime,
then counter. However, Aerospike must pack this data
into a small number of bytes in order to keep record
access efficient.” At present, there are only six bits
allocated to the regime. Rapid-fire elections could
overflow the regime counter, causing older data to be
have a higher regime than newer data. To avoid this
problem, Aerospike relies on wall clocks: whenever a
record’s wall clock is more than 27 seconds® greater
than another’s, Aerospike assumes the regime may
have wrapped, and ignores the regime in favor of the
record with the higher wall clock.

This theoretical vulnerability is somewhat difficult to
reproduce, because it requires that an old primary
accept a write with a significantly higher wall clock
than a logically newer primary, and primaries tend to
step down quickly when their heartbeats expire. More-
over, the same heartbeat mechanism is used for pro-
moting a new primary; so long as timeouts proceed in
roughly real-time, the likelihood of obtaining concur-
rent, desynchronized primaries is relatively low.

However, when timeouts do not trigger reliably, we
can observe consistency anomalies. Consider a single
record, initially empty, and an append operation w; in
flight to node A, the primary for regime 1. Let A pause
before processing w1. Since A is paused, it will not ex-
change heartbeat messages with the rest of the cluster,
and a new primary B will be elected with regime 2. B
can process a different append operation ws at time ¢4,
resulting in value “2”—and acknowledge completion of
wo to the client. Some time later, let A resume. Since
A still considers itself to be a primary, it will accept
the first append w at t5, and store the resulting value
“1” locally. Since a primary with a newer regime has
been elected, A cannot replicate w; to its peers. How-
ever, when A rejoins the cluster, A and B must com-
pare notes to identify the newest version of each record.
Even though A’s version comes from a lower regime (1
vs 2), if t1 < t2, then the regime will be ignored in fa-
vor of the wall clock, and A’s version “1” will dominate.
The acknowledged update ws will have been lost!

This scenario requires a quiet period while the process
is paused; if additional updates are made to B, they
will have a higher wall clock time, and might fall close
enough to ¢, to allow the use of regime comparison.

We designed a combined client, generator, and neme-
sis to explore this possibility, and can confirm that
Aerospike can lose updates when a node pauses for
more than 27 seconds:

{:valid?
:lost
"#{193384..193385 193389..193390 193393}",

false,

:recovered "#{193230}",
1ok

"#{137603 193238}",
:recovered-frac 1/6118,
:unexpected-frac O,
:unexpected "#{}",
:lost-frac 5/6118,
:ok-frac 321/322}

This behavior is a consequence of using wall clocks for
conflict resolution, and Aerospike uses wall-clocks be-
cause its sequence numbers (the regime) can quickly
exhaust their 6-bit allotment, wrapping to 0. Con-
sensus algorithms like Raft or Viewstamped Replica-
tion use an unbounded sequence number, which avoids
the problem of wrapping at the cost of higher storage
space. Aerospike was aware of this limitation during

"Master regimes, wall clocks, and counters are stored on a per-record basis in a header structure which should fit within a cache line;
this places tight limits on the number of bits which can be allocated to each number.

8 Aerospike’s clock error tolerance is based on the maximum number of elections that can take place in that interval, which is inversely
proportional to heartbeat intervals. Increasing the heartbeat interval slows down elections and lets Aerospike handle larger clock skews

and pauses.


https://github.com/jepsen-io/jepsen/blob/c8348dc8b230fad58720d98c09a61717e9752109/aerospike/src/aerospike/pause.clj#L167-L200
https://s3.amazonaws.com/jepsen.io/analyses/aerospike-3-99-0-3/20171213T033910.000Z-single-node-pause-data-loss.zip

the design process, and intends to mitigate it by allo-
cating more bits to the regime sometime after version
4.0. This should extend the window of clock error that
Aerospike can tolerate.

Aerospike and Jepsen also believe that a node whose
clock is bumped into the future, quickly followed by a
process crash or network partition, could orphan far-
future writes on that isolated node, which could go on
to supercede successful writes on the remainder of the
cluster. Due to time constraints, we were unable to
experimentally confirm this behavior.

4 Discussion

Aerospike has made significant changes since the last
Jepsen analysis, overhauling and simplifying their
core components to improve stability, performance,
and correctness. While the new strong consistency
scheme is somewhat unorthodox and lacks any formal
description or proof, our experimental research sug-
gests that SC mode in 3.99.2.1 provides linearizable
single-key operations so long as processes and clocks
are reasonably well-behaved, and can tolerate total net-
work partitions while retaining partial availability.

Foundational work to enable SC mode has also im-
proved AP performance and stability. For many AP
users, a small but predictable fraction of lost writes is
perfectly acceptable, and reductions in the frequency
and magnitude of consistency errors bring commensu-
rate advantages to the application. We recommend
that AP users upgrade to take advantage of these im-
provements, even if they choose not to use SC.

Note that Aerospike’s AP mode does not offer a cus-
tom merge function or built-in CRDTsS, so the only sce-
nario in which AP mode is not subject to write loss
is with immutable data, e.g. each record is only writ-
ten once. However, AP mode may also be appropri-
ate when the loss of small windows of writes poses
little threat to user happiness. Where concurrent up-
dates are common, and avoiding lost updates, dirty
reads, and stale reads is important, users should try
SC mode instead. Many Aerospike users have also de-
veloped homegrown partition detection and mitigation
schemes for AP, such as shutting down isolated sub-
clusters to prevent significant write loss. These users
may also be well served by SC.

In SC mode, Jepsen recommends that clients enable
commit-to-device true to ensure updates are writ-
ten to disk before commit. This also simplifies opera-
tions: Aerospike should smoothly recover from concur-

rent or sequential crashes without an operator issuing
manual, unsafe revive commands.

Users should also take care to run Aerospike on semi-
realtime networks and computers. For instance, some
virtualized environments may pause VMs for multiple
minutes to migrate them to other physical nodes; this
could cause the loss of data in Aerospike. With the de-
fault heartbeat settings, Aerospike can tolerate up to
27 seconds of combined clock skew and process pauses.

As Aerospike’s early-access documentation notes,
there are other operational concerns that could cause
safety violations. Non-durable deletes and TTL expi-
ration interact poorly with SC mode and are disabled
by default; we advise operators not to re-enable them
without careful thought. Operators should also take
care not to remove more than replication-factor nodes
from the cluster’s roster in a single step, or data loss
could result. Aerospike may also silently lose data if
some sectors or portions of a drive are erased, e.g. due
to device failure or operator accident.

SC mode only applies to single-key operations. Al-
though Aerospike bills itself as a “transactional” store,
multi-key operations like scans, queries, and aggre-
gates have no notion of a transactional, consistent
snapshot across keys, do not follow CP mode’s rules
for identifying the correct version of divergent copies,
and consequently allow dirty and stale reads. User
defined functions (UDFs) should be treated with cau-
tion; read operations don’t yet linearize, and mul-
tiple commit points in a transaction may result in
partially-completed transactions incompletely repli-
cated between nodes. Aerospike plans to improve these
systems in future iterations of SC.

In addition to the standard cluster replication algo-
rithm we’ve discussed so far, Aerospike has a cross-
datacenter replication (XDR) system, which employs
log-shipping for flexible uni- and bi-directional replica-
tion between different clusters. XDR allows stale reads
(since replication is asynchronous), and in bidirection-
ally replicated clusters, may lose concurrent updates:

Since XDR allows client writes to happen
to both clusters, two clients may simul-
taneously write to the same key on both
clusters, which leads to inconsistent data.
As the Aerospike database is agnostic of
the application data, it cannot auto-correct
this inconsistency.

Our tests did not cover cross-datacenter replication,
but Aerospike plans to research XDR strategies for SC
clusters going forward.


https://www.aerospike.com/docs/architecture/xdr.html

Aerospike has ported specific Jepsen scenarios to their
internal test suite, and begun integrating Jepsen into
their test infrastructure. However, experimental test-
ing can only demonstrate the presence of bugs, not
their absence. To gain more confidence in Aerospike’s
safety, a formal specification and proof of the consen-
sus algorithm would be helpful. Aerospike has begun
this work, but model-checking and proof will take some
time.

In future research, we would like to experimentally

confirm the possibility of data loss under clock skew
followed by crashes or partitions, and develop tests for
UDFs, queries, scans, and aggregations.

This work was funded by Aerospike, and conducted in
accordance with the Jepsen ethics policy. Jepsen wishes
to thank the entire Aerospike team for their invalu-
able assistance, especially Andrew Gooding and Kevin
Porter. We are also grateful to Brad Greenlee, Camille
Fournier, & André Arko for their comments on early
drafts.


https://www.aerospike.com/
https://jepsen.io/ethics.html

	Background
	AP mode
	SC Mode

	Test Design
	Results
	Dirty Reads After Partitions
	Node Crashes
	Wall Clocks

	Discussion

