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Dgraph is a distributed graph database which uses Raft for per-shard replication and a custom transactional
protocol for snapshot-isolated cross-shard transactions. Dgraph resolved all issues from our 2018 report on ver-
sion 1.0.2, and requested a brief followup. We found five safety issues in version 1.1.1—some known to Dgraph
already—including reads observing transient null values, logical state corruption, and the loss of large windows
of acknowledged inserts. All of these issues involved tablet migration. Dgraph has addressed three of these issues
in recent development builds, and we are unsure of the remaining two. This work was funded by Dgraph, and
conducted in accordance with the Jepsen ethics policy.

1 Background

Dgraph is a graph database which aims to provide
scalable, highly-available, and snapshot-isolated trans-
actions over a labeled directed graph, while minimiz-
ing network communication for performance. Concep-
tually, Dgraph stores a set of (entity, attribute,
value) triples. Entities (also known as subjects), are
compact binary UIDs. Attributes (also known as predi-
cates) are named edges. Values (also known as objects)
are either literal values, or the UIDs of other entities.
Together, these triples form an adjacency list represen-
tation of a graph. The types, cardinalities, and indices
of each predicate are given by a partial schema lan-
guage—when a schema is not defined, one is automat-
ically inferred.

To read this graph, Dgraph offers a recursive query
language adapted from GraphQL. Mutations are ex-
pressed by listing triples to add or remove from the
graph. For convenience, Dgraph can also represent all
triples associated with a given entity as a JSON object
mapping attributes to values—where values are other
entities, that entity’s attributes and values are embed-
ded as an object, recursively.

To store large datasets Dgraph shards the set of
triples by attribute, breaks attributes into one or more
tablets, and assigns each tablet to a group of nodes.
Each group uses Raft to provide replicated, sequen-

tially/linearizably consistent storage and queries over
that group’s triples. So long as a majority of each
group’s servers remain intact and connected, Dgraph
should remain available.1

To provide transactional isolation across different Raft
groups, Dgraph has built a custom transaction sys-
tem. Storage nodes (called Alpha) are controlled by
a supervisory system (called Zero). Zero nodes form
a single Raft cluster, which supervises the Raft clus-
ters formed by each Alpha group. Zero leaders assign
transaction timestamps and detect conflicts at commit
time, as well as maintaining cluster membership, and
the mapping of tablets to groups.

1.1 Consistency

As a part of our collaboration, Dgraph added a section
on consistency properties to their public documenta-
tion, which states that transactions in Dgraph ensure
snapshot isolation (SI) plus a realtime safety property:
if transaction T1 commits before T2 begins, than the
commit timestamp of T1 is strictly less than the start
timestamp of T2.2

When transactions only interact with single keys,
Dgraph’s real-time guarantees imply linearizability.
However, Dgraph transactions are not linearizable in
general, because linearizability requires that opera-
tions (i.e. transactions) appear to take place atomically,

1Note that Dgraph may create groups with fewer than the specified number of replicas, when the number of nodes in that group is not
evenly divisible by the target replica count. Those shards have reduced fault tolerance.

2This property may be what Elnikety, Pedone, & Zwaenepoel refer to as “conventional snapshot isolation” in Generalized Snapshot
Isolation and a Prefix-Consistent Implementation.
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whereas snapshot isolation allows transactions to in-
terleave so long as their write sets are disjoint. Lin-
earizability over atomic transactions is strict serializ-
ability: a stronger property. However, the constraint
that snapshot times are consistent with real-time or-
der is intuitive and useful: it prevents well-known
anomalies such as stale reads.

2 Test Design

We reviewed and updated the Jepsen test suite from
our previous analysis, primarily updating error han-
dling routines to adapt to new Dgraph client and server
behavior since 1.0.6. We ran our tests on five-node De-
bian clusters, both on LXC and EC2, with replication
factor three. Dgraph Alpha nodes were organized into
two groups: one with three replicas, and one with two.
Every node ran an instance of both Zero and Alpha.

We measured Dgraph’s behavior under a variety of fail-
ure modes, including Alpha and Zero crashes, tablet
moves, clock skew, and network partitions with both
transitive and non-transitive topologies.

2.1 Set

Our most basic test inserts a sequence of unique num-
bers into Dgraph, then queries for all extant values.
We then check that every successfully acknowledged
insert is present in a final read. We ran two variants
of this test.

The first variant uses a schema with type and value
fields, and for each inserted value v, creates a new en-
tity with type “element” and value v. To query, we
search for every object with type “element”, and re-
turn their corresponding values. The join from type
to value attributes helps verify that Dgraph’s type in-
dex works correctly.

The second variant omits the type field and instead
uses a single entity; every insert of v creates a triple
mapping that entity to v. This means that we can
query for every value associated with that particular
UID, which maps directly to the way Dgraph stores
triples internally. Dgraph finds the group associated
with the value predicate, looks up that particular en-
tity’s UID in that group, and returns all matching val-
ues, without using indices.

2.2 Upsert

An upsert is a common database operation in which
a record is created if and only if an equivalent record
does not already exist. For instance, we might wish to

ensure a user record exists for a given email, but if the
email is already taken, to avoid creating a second user.
In SQL databases, a unique primary key can be used
as the equivalence relation for upserts, but in Dgraph
there are no uniqueness constraints. Instead, users
perform a transaction which reads to ensure the record
doesn’t already exist, then inserts if necessary.

However, snapshot isolation only detects conflicts be-
tween transactions which write the same objects, but
inserts, by definition, write unique objects and will
never conflict. This allows write skew: two concurrent
upserts of the same value could read an empty state, in-
sert their respective rows, and commit, resulting in two
records instead of one. To avoid this problem, Dgraph
also treats indices as their own objects for the purposes
of conflict detection.

The index is stored as many key/value
pairs, where each key is a combination of
the predicate name and some function of
the predicate value (e.g. its hash for the
hash index). If two transactions modify the
same key concurrently, then one will fail.

To verify that this conflict detection works correctly, we
have several transactions concurrently attempt to up-
sert the same value, and subsequently read back all
objects with that value. If upserts are safe, we should
never find more than one copy for a given key.

2.3 Delete

Early experiments with Dgraph led to the suspicion
that deleting records might cause anomalous behav-
ior, especially with respect to indices, so we designed
a test for repeated upserts and deletions of the same
value. Axiomatically, upserts should never result in
more than one record—we verify this in the upsert test.
Our delete test extends this workload by concurrently
attempting to delete any records for an indexed value.
Since deleting can only lower the number of records,
not increase it, we expect to never observe more than
one record at any given time.

2.4 Bank

The bank test stresses several invariants provided by
snapshot isolation. We construct a set of bank ac-
counts, each with three attributes:

1. type, which is always “account”. We use this to
query for all accounts.

2. key, an integer which identifies that account.
3. amount, the amount of money in that account.
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Our test begins with a fixed amount ($100) of money
in a single account, and proceeds to randomly transfer
money between accounts. Transfers proceed by read-
ing two random accounts by key, and writing back new
amounts for those accounts. Concurrently, clients read
all accounts to observe the total state of the system.

Since transfers write every key that they read, snap-
shot isolation precludes concurrent execution of any
transfers between intersecting accounts, guaranteeing
transfers are serializable. Read-only transactions can-
not affect the state of the system, and observe consis-
tent snapshots, which implies they too must be serial-
izable. From this, we can prove that the total of all
account balances should be constant.

Because we like to live dangerously, we permute the
order of reads and writes in transfer transactions at
random, upsert new account records when none exist,
and delete accounts which have a zero balance. This
puts additional stress on Dgraph’s index, which can-
not assume that queries for a certain key always refer
to the same entity. We also insert garbage data be-
fore aborting certain transactions, to help detect dirty
reads. Different accounts use different predicates to
store their keys, values, and types, which means that
transfers and reads may cross multiple groups, rather
than being executed on the same Raft cluster.

2.5 Long Fork

For performance reasons, some database systems im-
plement parallel snapshot isolation, rather than stan-
dard snapshot isolation. Parallel snapshot isolation al-
lows an anomaly prevented by standard SI: a long fork,
in which non-conflicting write transactions may be vis-
ible in incompatible orders. As an example, consider
four transactions over an empty initial state:

1. (write x 1)
2. (write y 1)
3. (read x nil) (read y 1)
4. (read x 1) (read y nil)

Here, we insert two records, x and y. In a serializable
system, one record should have been inserted before
the other. However, transaction 3 observes y inserted
before x, and transaction 4 observes x inserted before
y. These observations are incompatible with a total
order of inserts.

To test for this behavior, we insert a sequence of unique
keys, and concurrently query for small batches of those
keys, hoping to observe a pair of states in which the im-
plicit order of insertion conflicts.

2.6 Sequential

Earlier versions of Dgraph offered a per-client property
akin to sequential consistency, which enforced that
each individual client observed monotonically increas-
ing states of the graph. To help check this property,
we establish a set of registers, each composed of a key
and a value. On each register separately, we perform
a series of increment operations mixed with reads of
that register. Since our transactions only interact with
single keys, snapshot isolation implies serializability.
Since the value of a register can only increase over
time, we expect that for any given process, and for any
given register read by that process, the value of that
register should monotonically increase.

3 Previous Issues

Our analysis of Dgraph 1.0.2, completed in August
2018, left four issues unresolved: a deadlock in cluster
join, an issue where transactions would time out at the
end of set tests, and two snapshot isolation violations
which allowed for permanent logical state corruption,
associated with and without tablet moves, respectively.
Dgraph has since closed all of these issues, and we’d
like to review them briefly.

3.1 Deadlocks in Cluster Join

When setting up new clusters, Dgraph Alpha nodes
could get stuck indefinitely at the JoinCluster phase.
Dgraph believes this problem had to do with a quorum
check performed by the underlying Raft library, com-
bined with Dgraph’s parallel join process. Disabling
the quorum check for reads, and ensuring that nodes
joined the cluster one at a time, seemed to resolve the
issue by 1.0.8-rc1, and it did not appear in our review
of 1.1.1 either.

3.2 Endless Timeouts

At the end of UID set tests, we found occasional cases
where Dgraph could time out every read query after
some point. This problem affected clusters without ex-
ogenous faults, and, once triggered, appeared to last
indefinitely: we observed up to an hour without recov-
ery. Nodes appeared to be in the middle of an auto-
matic predicate migration which never completed.

The cause of this issue was never ascertained, but by
February 2019, it was no longer reproducible.
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3.3 Permanent SI Violations with Multiple
Tablets

In 1.0.5-dev, bank tests—even in healthy clusters—
could result in account balances drifting higher or
lower over time. Effects could be limited to particular
nodes. Some tests showed only transient incorrect bal-
ances, and others appeared permanently altered. This
problem appeared even without predicate moves.

By version 1.0.7, Dgraph no longer exhibited snapshot
isolation violations in bank tests with healthy clusters,
though it still corrupted data with network partitions.

By November 2018, Dgraph had identified a cause.
When a Zero leader received a commit request for a
transaction T , it assigned a timestamp to that com-
mit. If Zero was unable to communicate with its Raft
peers, and a new Zero node became the leader, that
new leader would begin allocating timestamps at a
significantly higher number. Alphas interacting with
the new Zero leader would advance their max-applied
timestamps to match. Then assume the original Zero
leader rejoined the cluster as a follower, and retried
its commit proposal—this time, succeeding. Because
this new proposal kept the original transaction times-
tamps, two problems could occur:

1. A read R executed after the new leader advanced
the clock, but before T ’s commit was retried,
could fail to observe T —even though T would go
on to commit in the logical past of R. In essence,
this allowed temporary “holes” in the timeline of
transactions.

2. When an Alpha node applied a write w for key
k, it would first check k’s last written timestamp,
and ignore w if it was lower. If w was a write
from the logical past, w might be rejected—but
other writes from the same transaction might
succeed, so long as they hadn’t been written re-
cently. This allowed Dgraph to partially apply
transactions.

In addition, Dgraph identified and fixed a second, re-
lated bug in the transaction commit process. When
Alpha leaders received transaction commit messages
from Zero, they appended those commits via Raft to
their log. However, if that append process timed out,
Alpha would give up on appending that commit mes-
sage. This allowed transactions to be applied on some
Alpha groups, but not on others.

Both of these issues were fixed in 1.0.11, which pre-
vented Zero leaders-cum-followers from sending trans-
action commit proposals to new leaders after stepping
down, and by forcing Alpha nodes to retry commits on

indeterminate failures, rather than giving up on them.

3.4 Permanent SI Violations with Single
Tablets

Even in healthy clusters, version 1.0.4 exhibited read
skew in bank tests, leading to permanent state corrup-
tion. Some of this behavior was caused by queries re-
turning spurious null values instead of valid data, but
others were caused by read skew. Account totals could
change gradually over time, fluctuate chaotically, or al-
ternate between two different values.

While these symptoms were similar to the previous is-
sue, they had different underlying causes: these prob-
lems were linked to tablet migration. By January 2019,
Dgraph had redesigned the tablet migration code: in-
stead of blocking writes on Alphas during a migration,
it would instead block commits on the Zero leader—the
node with an authoritative view of the tablet-to-group
mapping. This prevented writes from sneaking onto
the wrong nodes in the interval between the mapping
changing on Zero, and being replicated to all Alphas.
As an additional safety measure, Alpha nodes also now
encode a subset of their local tablet-to-group mapping
with each commit request, so that Zero can identify a
potential mismatch.

This redesign prevented account totals from chang-
ing permanently. However, reads do not (for perfor-
mance reasons) consult Zero, which allowed read-only
transactions to observe occasional transient read skew.
Upon receiving a read at time t, Alpha would block
until it had applied every transaction up to t, to en-
sure no transaction’s effects would be missing for the
read at t. However, if that particular Alpha had an
outdated view of the tablet to group mapping, it could
read a tablet which had just been migrated to some
other node, or a tablet which it was supposed to own,
but didn’t yet, resulting in stale or empty reads, respec-
tively.

In essence, this problem stemmed from the fact that
membership changes and transaction commits formed
two separate, asynchronous streams of information
from Zero to Alpha; a node might be processing recent
transactions, but be out of date on cluster membership.
To bring these streams into alignment, Dgraph added
a checksum of the membership state to each batch of
transaction commits, and ensured that Alpha nodes re-
fused to service requests when their membership state
hasn’t caught up to the transaction stream.

This prevented reads from executing on nodes which
didn’t yet, or no longer, held the current copy of that
tablet. Dgraph then passed bank tests even with tablet
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migrations3; the patch was released in Dgraph 1.1.

4 New Results

In the present work, we tested Dgraph 1.1.1, as well as
later development builds. We encountered five safety
issues, all involving tablet migration.

4.1 Transient Missing Values

In 1.1.1 and 1.1.1-56-ge18986f1c, we observed cases
where reads would return a null value for a record
which should have existed. For instance, consider this
bank test, in which a handful of reads observed null
values for account balances…

{0 nil, 1 nil, 2 5, 3 13, 4 11, 5 nil,
6 nil, 7 17}

… or null values for account keys:

{nil 15, 0 10, 2 1, 3 36, 4 4, 7 9}

One could interpret this behavior as read skew, since
nil is the initial state of every record—but this prob-
lem does not resemble read skew in general. In almost
every case, we observed the absence of data, rather
than a value from the wrong timestamp.

These errors were common in version 1.1.1, occur-
ring with essentially every tablet move. In sequential
tests (issue 4540), they manifested as spurious non-
monotonic reads. In bank tests (issue 4534), we saw
transient reads where the total balance was lower than
expected, because some accounts showed nil rather
than their actual balance.

Figure 1: In this plot of total balances over time, some reads immediately following a tablet move operation
(vertical grey lines) observed null values for some accounts, resulting in a low balance.

This issue occurred immediately following tablet mi-
gration. When a tablet was moved from one shard
to another, the new shard could serve transactions
whose start timestamp was prior to the tablet move
time, and the old shard could serve transactions with
a start timestamp after the move time—i.e. after that
shard had deleted the tablet entirely. Without any
data, those shards would return null values.

This bug was fixed in ec445503, which should be re-
leased as a part of 1.1.2; we have verified that this

patch dramatically reduces the probability of spurious
nulls.

However, we continued to see this problem infre-
quently with 1.1.1-56-ge18986f1c. During tablet
moves, one read every few thousand seconds observed
null instead of the actual value. More recent builds
have not exhibited this problem, but we left issue
#4575 open until a cause and fix can be confirmed.

3These passing results may have been somewhat premature; later testing revealed additional issues, which we describe in this report.
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4.2 Read Skew Leading to Data Corruption

In versions 1.1.1 and 1.1.1-48-g157896305, bank tests
occasionally exhibited permanent changes in the bal-
ance of all accounts. Under snapshot isolation, the
bank workload should observe a constant balance over
time. However, a tablet move could cause a single read
query to observe two account balances from different
timestamps: an anomaly called read skew. This was
issue #4543.

In this history, a transfer transaction moved $2 from
account 4 to account 6, which emptied account 4, and
changed account 6’s balance from $1 to $3. However,
a later read observed account 4 after the transfer, and
account 6 before, resulting in a total of $98 rather than
$100. We have elided other transactions for clarity.

read {0 58, 1 11, 3 1, 4 2, 5 20, 6 1, 7 7}
transfer {:from 4, :to 6, :amount 2}
read {0 55, 1 11, 3 4, 5 20, 6 3, 7 7}}
read {0 55, 1 11, 3 4, 5 20, 6 1, 7 7}}

Transfer transactions which wrote new values based
on skewed reads allowed Dgraph to propagate tran-
sient read errors into permanent changes: the total of
all accounts changed from $100 to $98, and remained
that way for the remainder of the test.

In this test run, process 5 begins a transfer of $2 from
account 6 to account 3, while a tablet move is ongoing.
While that transfer is happening, a pair of read trans-
actions observe account 3’s balance increase from $5
to $7, but no corresponding decrement is made to ac-
count 6. The transfer transaction then fails with an
error message indicating that the read timestamp for
that transaction was lower than the minimum times-
tamp available for that key. Again, we elide other op-
erations for clarity:

transfer {:from 6, :to 3, :amount 2}
read {0 51, 2 1, 3 5, 4 11, 5 3, 6 8, 7 21}
read {0 51, 2 1, 3 7, 4 11, 5 3, 6 8, 7 21}
... move-tablet completes ...
read :error :old-timestamp}

Figure 2: A plot of total account balances over time. After the read skew anomaly, the total remains $102 for the
remainder of the test. Transient low values are caused by the transient null value problem discussed previously

It’s not clear from this history whether process 5’s
transfer somehow took partial effect, or whether it
cleanly failed and something else in Dgraph caused the
value of account 3 to fluctuate. Whatever the case, the
effects were permanent: for the rest of the test, every
read (except those affected by transient null issues, as
described previously) observed a total of $102, rather
than $100.

Dgraph is still investigating this issue.

4.3 Loss of Inserted Records

In UID set tests with Dgraph 1.1.1, 1.1.1-48-
g157896305, and 1.1.1-65-g2851e2d9a, we observed
that windows of up to tens of thousands of acknowl-
edged inserts could be lost. This issue (#4538) ap-
peared to be associated with tablet moves.
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For example, in this test run, Dgraph acknowledged
22,187 writes successfully. However, of those acknowl-
edged writes, all 11,544 between 11,350 and 23,715
were lost—they failed to appear in a final read. Triples
inserted both before and after that window were fine.

Dgraph believes this problem is related to posting list
splits. A posting list is a collection of edges belonging
to some attribute. When a posting list becomes large,
it is split into a tree, whose root is identified by a canon-
ical key. However, a bug in Dgraph allowed the parts
of a split posting list to be accessed individually, in-
stead of through the main key. Accessing the posting
list through these secondary keys caused issues dur-
ing rollups, and resulted in spurious keys being added
to the database. Additional patches disabled posting
split lists, and we believe this problem may be resolved
in 1.1.1-59-g191232226.

4.4 Many Writes Enter, One Write Leaves

In version 1.1.1, we saw something else unusual with
UID set tests: Dgraph would successfully acknowledge
tens of thousands of inserts of distinct triples, and,

when we asked for all of them back, return exactly one.
In this test run, we successfully inserted 19,030 unique
integer values, and, upon reading them back, received:

{:q [{:uid 0x1, :value 24333}]}

… rather than a list of values:

:q [{:uid 0x3, :value [1, 2, 4, ..., 24333]}]

This issue only occurred infrequently, but the impact
was severe: not only was all but one write lost, but the
type of value changed! Instead of receiving a list of inte-
gers, we got only a single number. This is particularly
vexing because the schema for this attribute explicitly
defines value to be a list: value: [int] .

Dgraph believes this problem (#4601) could be asso-
ciated with a bug in splitting posting lists, and that
recent patches have addressed the issue. Indeed, we
have not encountered it in 1.1.1-65-g2851e2d9a, or sub-
sequent builds. However, reproducing this issue has
proven difficult, and without a plausible account as
for why the posting-list bug could cause the schema to
change, we are cautious about declaring it fixed.

№ Summary Event Required Fixed In

4534 Transient missing values Tablet move 1.1.1-56-ge18986f1c
4575 Transient missing values (infrequent) Tablet move Unresolved
4543 Permanent state corruption Tablet move Unresolved
4538 Lost inserts Tablet move 1.1.1-59-g191232226?
4601 Many writes enter, one write leaves Tablet move 1.1.1-65-g2851e2d9a?

5 Discussion

Dgraph resolved all of the issues we discussed in the
previous Jepsen analysis. However, we found signif-
icant new safety issues in 1.1.1 which were, in many
cases, functionally identical to bugs we’ve seen in the
past: read skew, transient missing values, and lost in-
serts.

This does not mean that Dgraph has failed to make
progress. Indeed, the work Dgraph has undertaken in
the last 18 months has dramatically improved safety.
In 1.0.2, Jepsen tests routinely observed safety issues
even in healthy clusters. In 1.1.1, tests with healthy
clusters, clock skew, process kills, and network parti-
tions all passed. Only tablet moves appeared suscepti-
ble to safety problems.

As of 1.1.1-59-g191232226, we have failed to observe
any violations of snapshot isolation. The current

Jepsen test suite passes—at least with short runs. Un-
fortunately, some of these bugs were difficult to re-
produce, and we have not had sufficient testing time
to declare these issues resolved. Since Dgraph Labs
has not identified a potential cause or patch resolv-
ing 4575 and 4543, we’ve left these issues categorized
as “unresolved”—though we cannot prove they are
present in 1.1.1-59-g191232226. Dgraph Labs plans to
perform additional testing as they go forward.

As always, we note that Jepsen takes an experimental
approach to safety verification: we can prove the pres-
ence of bugs, but not their absence. While we try hard
to find problems, we cannot prove the correctness of
any distributed system.

5.1 Tablet Moves

All of the issues we found had to do with tablet migra-
tions, which raises the obvious question: why migra-
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tions in particular? We suggest two potential causes.

In part, we found issues in tablet migrations because
that’s where we looked. Dgraph Labs knew that 1.1.1
had issues with tablet moves, but had difficulty fix-
ing them, in part because the Jepsen test suite no
longer ran reliably. Changes to Dgraph APIs pre-
vented Jepsen from properly detecting common failure
conditions, which in turn broke the retry mechanisms
Jepsen uses to run tests reliably. Updating the tests
to interpret Dgraph’s new error types, as well as some
tuning changes, allowed us to find and confirm bugs
faster. With those Jepsen improvements in place, we
focused on tablet moves and specific workloads in our
collaboration, knowing there were extant bugs to find.

In more general terms, tablet migrations were error-
prone because changing distributed state is just plain
hard. Dgraph relies on Raft for state changes within
a group, and Raft is a solid algorithm with mature im-
plementations that handle failure well. Dgraph coor-
dinates transactions between Raft groups by having
nodes agree on which groups own which tablets. This
too is relatively straightforward—as long as that map-
ping doesn’t change. When mappings are stable, every-
one’s requests go to the right groups, and Raft handles
it from there. When the mapping changes, nodes might
be out of date: Dgraph doesn’t, for performance rea-
sons, use a consensus protocol for tablet mappings. In-
stead, nodes asynchronously discover mapping changes
via side channels, which makes agreement trickier.

We see this pattern in many Jepsen tests: as more
databases adopt proven consensus algorithms like
Paxos and Raft for shard state, we’ve found fewer bugs
at the level of individual shards. Coordinating clus-
ter metadata and ensuring transactional correctness
across those shards has proven more difficult. This sug-
gests an important avenue of research for academics—
and an area of caution for engineers.

5.2 Recommendations

Dgraph 1.1.1 exhibited significant violations of snap-
shot isolation related to tablet migration: an infre-
quent but normal process in Dgraph. Users could ex-
perience transient read skew, permanent state corrup-
tion, the loss of large windows of committed inserts, or

the replacement of a (potentially large) set of values
with just one, along with type errors: returning a sin-
gle integer, rather than a list.

In version 1.1.1 and below, we recommend exercising
caution during tablet moves, if possible. For instance,
performing manual tablet migration during a sched-
uled maintenance window, rather than under normal
load, could reduce the probability that transactions en-
counter anomalous behavior. We also advise discontin-
uing use of the cluster during tablet migration to pre-
vent update transactions from observing inconsistent
data, then propagating that corrupt state back into the
database.

Recent development builds, like 1.1.1-59-g191232226,
have not exhibited these anomalies, but we stress that
Jepsen has not had sufficient time to verify these
builds in detail. While we cannot make a strong
claim of correctness, Version 1.1.2 incorporates many
patches which should dramatically reduce the fre-
quency of errors. We advise upgrading to 1.1.2 or
higher.

5.3 Future Work

Dgraph continues to evaluate open issues and perform
their own Jepsen testing.

Meanwhile, Jepsen has developed Elle: a novel checker
for transactional systems, which should be well-suited
to testing Dgraph. We would like to apply Elle to
Dgraph, especially with respect towards per-process
and realtime guarantees. We would also like to eval-
uate Dgraph with slow networks, process pauses, and
single-node faults like filesystem corruption.

In general, our tests now go thousands of seconds with-
out finding bugs, but we did occasionally find issues in
development builds. Weak discriminatory power sug-
gests it’s time to redesign the tests to be more aggres-
sive. We could increase key and tablet counts, adjust
contention probabilities, and shard tests where appro-
priate.

This work was funded by Dgraph, and conducted in ac-
cordance with the Jepsen ethics policy. Jepsen wishes to
thank the entire Dgraph team for their help—especially
Manish Jain and Daniel Mai.
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