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The etcd key-value store is a distributed database based on the Raft consensus algorithm. In our 2014 analysis,
we found that etcd 0.4.1 exhibited stale reads by default. We returned to etcd, now at version 3.4.3, to investigate
its safety properties in detail. We found that key-value operations appear to be strict serializable, and that watches
deliver every change to a key in order. However, etcd locks are fundamentally unsafe, and those risks were exac-
erbated by a bug which failed to check lease validity after waiting for a lock. The etcd developers have written a
companion blog post to this report. This work was funded by The Cloud Native Computing Foundation, which is
part of The Linux Foundation, and was conducted in accordance with the Jepsen ethics policy.

1 Background

The etcd key-value store is a distributed system in-
tended for use as a coordination primitive. Like
Zookeeper and Consul, etcd stores a small volume of
infrequently-updated state (by default, up to 8 GB) in
a key-value map, and offers strict-serializable reads,
writes and micro-transactions across the entire data-
store, plus coordination primitives like locks, watches,
and leader election. Many distributed systems, such
as Kubernetes and OpenStack, use etcd to store clus-
ter metadata, to coordinate consistent views over data,
to choose leaders, and so on.

When we evaluated etcd 0.4.1 in 2014, we found that
it exhibited stale reads by default due to an optimiza-
tion. While the Raft paper discusses the need to thread
reads through the consensus system to ensure liveness,
etcd performed reads on any leader, locally, without
checking to see whether a newer leader could have
more recent state. The etcd team implemented an op-
tional quorum flag, and in version 3.0 of the etcd API,
made linearizability the default for all operations ex-
cept for watches.

The etcd 3.0 API centers on a flat map of keys to val-
ues, where both keys and values are opaque byte ar-
rays. Hierarchical keys may be simulated with range
queries. Users may read, write, and delete keys, or
watch for a stream of updates to single or ranges of
keys. Leases (transient objects with a limited lifetime,
kept alive via client heartbeats), locks (exclusively held
named objects, bound to leases), and leader elections

round out the etcd toolkit.

In 3.0, etcd offers a limited transaction API for atomic
multi-key operations. A transaction, in this model, is
a single conditional expression with a predicate, a true
branch, and a false branch. The predicate may be the
conjunction of several per-key comparisons: equality
or various inequalities, over a single key’s version, the
global etcd revision, or the key’s current value. Both
true and false branches may include multiple read and
write operations, all of which are applied atomically,
depending on the result of evaluating the predicate.

1.1 Consistency Documentation

As of October 2019, etcd’s API guarantees documen-
tation claimed that “all API calls exhibit sequential
consistency, the strongest consistency guarantee avail-
able from distributed systems.” This is incorrect: se-
quential consistency is strictly weaker than lineariz-
ability, and linearizability is definitely achievable in
distributed systems. The documentation goes on to
claim that “etcd does not guarantee that it will return
to a read the ‘most recent’ value (as measured by a
wall clock when a request is completed) available on
any cluster member.” This is also an overly conserva-
tive statement: if etcd provides linearizability, reads
always observe the most recently committed state in
the linearization order.

The documentation also claims that etcd guarantees
serializable isolation: all operations, even those involv-
ing multiple keys, appear to take place in some total
order. The documentation characterizes serializable
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isolation as “the strongest isolation level available in
distributed systems”. This is (depending on how one
defines “isolation level”), not true either; strict serial-
izability is stronger than serializability, and strict se-
rializability is also achievable in distributed systems.

The documentation states that all operations (except
for watches) in etcd are linearizable by default. The
documentation defines linearizability as conformance
with a loosely synchronized global clock. We note that
this definition is not only incompatible with Herlihy
& Wing’s definition of linearizability, but also implies
causality violations; nodes with faster clocks would be
required to read the results of operations that hadn’t
even begun yet. We assume that etcd is not a time ma-
chine, and that as an implementation of Raft, it offers
the commonly accepted definition of linearizability in-
stead.

Since key-value operations in etcd are serializable and
linearizable, we believe etcd is in fact strict serializable
by default. This makes sense, because all etcd keys re-
side within a single state machine, and all operations
on that state machine are totally ordered via Raft. In
essence, the entire etcd dataset is one linearizable ob-
ject.

An optional serializable flag downgrades reads
from strictly serializable to serializable consistency by
allowing reads of stale committed state. Note that the
serializable flag has no impact on whether or not
a history is serializable; etcd key-value operations are
always serializable.

2 Test Design

We designed a test suite for etcd using the Jepsen
testing library. We evaluated etcd version 3.4.3 (the
latest release as of October 2019) running on five-
node Debian Stretch clusters. We introduced a num-
ber of faults into these clusters, including network
partitions isolating single nodes, separating the clus-
ter into majority and minority components, and non-
transitive partitions with overlapping majorities. We
crashed and paused random subsets of nodes, as well
as specifically targeting leaders for failure. We also in-
troduced clock skew up to hundreds of seconds, both for
multi-second intervals, and strobing rapidly over mil-
liseconds. Since etcd supports dynamic membership
changes, we randomly added and removed nodes dur-
ing testing.

Our test workloads included registers, sets, and trans-
actional tests to verify key-value operations, as well as
specialized workloads for locks and watches.

2.1 Registers

To evaluate etcd’s safety for key-value operations, we
designed a register test, which performs randomized
reads, writes, and compare-and-set operations over sin-
gle keys. We evaluated those histories with the Knos-
sos linearizability checker, using a model of a compare-
and-set register, plus versioning information.

2.2 Sets

As a quantitative measure of stale reads, we designed
a set test, which used a compare-and-set transaction to
read a set of integers from a single key and append a
value to that set. We concurrently read the set through-
out the test. At the end of the test, we looked for cases
where an element we knew should have been in the
set failed to appear in reads, and used those cases to
quantitatively measure stale reads and lost updates.

2.3 Append

To verify strict serializability, we designed an append
test, where transactions concurrently read and ap-
pended to lists of unique integers. We stored each list
in a single etcd key, and performed each transaction’s
appends by reading every key to be modified in one
transaction, then writing those keys and performing
any reads in a second transaction, which was guarded
to ensure that no written keys had changed since the
first read. At the end of the test, we constructed a de-
pendency graph between transactions on the basis of
real-time precedence, and the relationships between
reads and appends. Checking that graph for cycles al-
lowed us to determine whether the history was strict
serializable.

While etcd prohibits transactions from writing the
same key multiple times, we could issue transactions
with up to one write per key. We also checked to en-
sure that reads within a transaction reflected previous
writes from the same transaction.

2.4 Locks

As a coordination service, etcd touts out-of-the-box sup-
port for distributed locking. We evaluated these locks
in two ways. First, we generated randomized lock and
unlock requests, acquiring a lease for each lock acqui-
sition and holding it open using the Java etcd client’s
keepalive feature until release. We checked these his-
tories using Knossos to see whether they formed a lin-
earizable implementation of a lock service.

For a more practical test (and to gain a more quan-
titative view of how often locks might fail), we used
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etcd locks to provide mutual exclusion for updates to
an in-memory set, and looked for lost updates to that
set. This test allowed us to directly confirm whether
systems which used etcd as a mutex could update ex-
ternal state safely.

A third variant of the lock test used guards on the lease
key to modify a set stored in etcd.

2.5 Watches

To verify that watches provide every update to a key in
order, our watch test created a single key and blindly
set it to unique integer values over the course of the
test. Meanwhile, clients would concurrently watch
that key for a few seconds at a time. Each time a
client initiated a watch, it would pick up at the revi-
sion where it last left off.

At the end of this process, we verified that every client
observed the exact same sequence of updates to the
key.

3 Results

3.1 Watching With Revision 0

When watching a key, clients can specify a start revi-
sion, which is “an optional revision for where to inclu-
sively begin watching”. If a user wishes to observe ev-
ery operation on some key, they could pass the first
etcd revision. What is the first revision? The data
model and glossary didn’t say; revisions are charac-
terized as monotonically incrementing 64-bit counters,
but it’s not clear whether etcd begins at 0 or 1. A rea-
sonable user might assume 0, just to be safe.

This is, apparently, not correct. Asking for revision 0
causes etcd to stream updates beginning withwhatever
revision the server has now, plus one, rather than the
first revision. Asking for revision 1 yields all changes.
This behavior was not documented.

In practice, we think this is relatively unlikely to cause
issues for production users: most clusters spend little
time at revision 1, and etcd is designed to compact his-

tory over time, which means that real-world applica-
tions probably aren’t relying on reading every version
from revision 1 anyway. This behavior is justifiable,
but would be less surprising if documented.

3.2 Locks Aren’t Real

The API documentation for locks states that a locked
key “can be used in conjunction with transactions to
safely ensure updates to etcd only occur while holding
lock ownership,” but strangely does not describe any
guarantees, or the intended purpose, for locks them-
selves.

However, other writing from the etcd maintainers does
tell us how locks are intended to be used. For instance,
the etcd 3.2 release announcement demonstrates the
use of etcdctl to lock concurrent updates to a file on
disk. A GitHub issue asking what the exact use case is
for locks resulted in this response from an etcd main-
tainer:

My understanding is that etcd lock is a ser-
vice that can be used by users (or other sys-
tems) for protecting access to whatever re-
source they wanted to protect (not neces-
sarily any resource in etcd database), some-
thing like:

1. acquire an etcd lock
2. do something (again, not necessarily

related to etcd database)
3. unlock the same etcd lock

This is exactly what the etcdctl documentation showed
as an example: an etcd lock was used to protect an etcd
put command, but did not couple the lock key to the up-
date.

Unfortunately, this is unsafe, because multiple clients
may hold the same etcd lock simultaneously. While
this problem is exacerbated by process pauses, crashes,
or network partitions, it can also occur in healthy clus-
ters, without any external faults. For instance, in this
short test run, process 3 successfully acquires a lock,
and process 1 concurrently acquires that same lock be-
fore process 3 can release it:
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Mutex violation was worst with short lease TTLs: 1,
2, and 3-second TTLs generally failed to provide mu-
tual exclusion after only a few minutes of testing, even
in healthy clusters. Process pauses and network parti-
tions created problems faster.

In a variant of our lock test, we used etcd mutexes to
protect concurrent updates to a set of integers, just as
the etcd documentation suggested. Each update read
the current value of an in-memory collection, and, ap-
proximately one second later, wrote back that same col-
lection plus a unique element. With two-second leases
TTLs, five concurrent processes, and process pauses ev-
ery five seconds, we could reliably induce the loss of
~18% of acknowledged updates.

This problemwas exacerbated by the way in which etcd
acquired locks internally. If a client waited for another
client to release a lock, lost its lease, and then the lock
was released, the server would not re-check to make
sure the lease was still valid before informing the client
that they now held the lock.

Adding an additional lease check, as well as choos-
ing longer TTLs and tuning election timeouts care-
fully, can all help reduce the frequency of this issue.
However, mutex violations cannot be eliminated alto-
gether, because distributed locks are a fundamentally
unsafe concept in asynchronous systems. As Dr. Mar-
tin Kleppmann describes eloquently in his article on
distributed locking, lock servicesmust sacrifice correct-
ness in order to preserve liveness in asynchronous sys-
tems: if a process crashes while holding a lock, the lock
service needs some way to force the release of the lock
in order to make progress. However, if the process is
not in fact dead, but merely slow or unreachable, re-
leasing the lock could lead to it being held in multiple
places at once.

Even if a distributed lock service were to take advan-
tage of a magical failure detector and actually guaran-
tee mutual exclusion, it would still, in general, be un-
safe to use that lock service to guarantee the ordering
of operations on some non-local resource. If process A

sends a message to database D while holding a lock, A
crashes, and process B acquires the lock and sends a
message to D, then the message sent by Amight arrive
(thanks to asynchrony) after process B’s message, vio-
lating the mutual exclusion property that the lock was
intended to provide.

In order to prevent this problem, one must rely on the
storage system itself to ensure transactional correct-
ness, or, if the lock service provides one, use a fencing
token of some kind, which is included with every op-
eration a lockholder performs and used to ensure that
no previous lockholder’s operations interleave with the
current lockholder’s. Google’s Chubby lock service, for
instance, calls these tokens sequencers. In etcd, users
can use the revision of their lock key as a globally or-
dered fencing token.

In addition, etcd lock keys can be used to protect trans-
actional updates to etcd itself. By executing a trans-
action which checks to see if the lock key’s version
is greater than zero, users can prevent a transaction
from taking effect if the lock is no longer held. In our
tests, this approach safely isolated read-modify-write
operations where the write was a single lock-guarded
transaction. This approach provides an isolation prop-
erty akin to fencing tokens, but (like fencing tokens)
does not guarantee atomicity: a process could crash or
lose its mutex during a multi-operation update, leav-
ing etcd in a logically inconsistent state.
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№ Summary Event Required Fixed in

11496 Watches beginning at revision 0 start later None Unresolved
11456 Locks return after blocking without checking ownership None Master
11457 Locks are not documented as unsafe None Unresolved

4 Discussion

In our tests, etcd 3.4.3 lived up to its claims
for key-value operations: we observed nothing but
strict-serializable consistency for reads, writes, and
even multi-key transactions, during process pauses,
crashes, clock skew, network partitions, and member-
ship changes. Strict-serializable behavior was the de-
fault for key-value operations; performing reads with
the serializable flag allowed stale reads, as docu-
mented.

Watches appear correct, at least over single keys. So
long as compaction does not destroy historical data
while a watch isn’t running, watches appear to deliver
every update to a key in order.

However, etcd locks (like all distributed locks) do not
provide mutual exclusion. Multiple processes can hold
an etcd lock concurrently, even in healthy clusters with
perfectly synchronized clocks. The lock API documen-
tation failed to mention this issue, and the only ex-
amples of locks provided were unsafe. Locking issues
should be somewhat reduced after this patch is re-
leased.

The etcd team has made several changes to their doc-
umentation as a result of our collaboration, which
should be published in upcoming versions of the etcd
website.1 The API guarantees page on GitHub now
says etcd is strict serializable by default, and no
longer claims that sequential and serializable are the
strongest consistency levels achievable in distributed
systems. Revisions are now documented to start at 1,
though the watch API documentation still does not dis-
cuss that passing a revision of 0 means “return events
after the current revision, plus one”, rather than “re-
turn all events”. Documentation on lock safety issues
is under development.

Some documentation changes, such as documenting
the special behavior of revision 0 in watches, still await
attention.

As always, we note that Jepsen takes an experimental
approach to safety verification: we can prove the pres-
ence of bugs, but not their absence. While we make ex-
tensive efforts to find problems, we cannot prove etcd’s

correctness.

4.1 Recommendations

If you use etcd locks, consider whether those locks
are used to ensure safety, or simply to improve perfor-
mance by probabilistically limiting concurrency. It’s
fine to use etcd locks for performance, but using them
for safety might be risky.

Specifically, if you use an etcd lock to protect a shared
resource like a file, database, or service, that resource
should guarantee safety without a lock involved. One
way to accomplish this is to ensure that every inter-
action with the shared resource includes a monotonic
fencing token—for instance, the etcd revision associ-
ated with the currently-held lock key. The shared re-
source should ensure that once a client has used a to-
ken y to perform some operation, any operations using
a lower token x < y must fail. This approach does
not ensure atomicity, but it does ensure operations per-
formed under a lock are contiguous, rather than inter-
leaved.

We suspect that users are unlikely to encounter this—
but if you do rely on reading all changes from etcd,
starting at the first revision, remember to pass 1, not
0, for the first watch revision. As far as we can deter-
mine experimentally, revision 0 means “the current re-
vision”, not “the earliest revision”.

Finally, etcd’s locks, like all distributed locks, are dan-
gerously named: users might be tempted to use them
like normal locks, and be surprised when they fail to
provide mutual exclusion. The API documentation,
blog posts, and GitHub issues fail to note this risk. We
recommend that the etcd documentation inform users
that locks do not provide mutual exclusion, and show
examples of using fencing tokens to update shared
state, rather than examples which could lose updates.

4.2 Future Work

The etcd project has been stable for some years now:
the Raft algorithm at its core is well-established, etcd’s
key-value API is simple and well-understood, and
while tangential features like locks and watches have

1As of this writing, documentation fixes are in master on GitHub, but have not yet been published to the etcd documentation site.
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gained new APIs recently, their semantics are rela-
tively straightforward. We believe we have reasonable
coverage for basic gets, puts, transactions, locks, and
watches. However, there are some additional tests we
could perform.

Our tests do not evaluate deletes rigorously, and there
might be edge cases around versions vs revisions when
objects are repeatedly created and deleted. Future
tests could investigate deletions in more depth. We
have also not tested range queries, or multi-key watch
operations, though we suspect their semantics are sim-
ilar to single-key operations.

While we test with process pauses, crashes, clock skew,
partitions, and membership changes, we have not in-
vestigated disk corruption or other byzantine single-
node faults. Future research could investigate these
possibilities.

This work was funded by The Cloud Native Comput-
ing Foundation, which is part of The Linux Founda-
tion, and was conducted in accordance with the Jepsen
ethics policy. We wish to thank the etcd team for their in-
valuable assistance, especially Chris Aniszczyk, Gyuho
Lee, Xiang Li, Hitoshi Mitake, Jingyi Hu, and Brandon
Philips.
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