
MongoDB 3.4.0-rc3
Kyle Kingsbury

2017-02-07

In April 2015, we discussed stale and dirty reads in MongoDB 2.6.7. However, writes appeared to be safe; update-
only workloads with majority write concern were linearizable. This conclusion was not entirely correct. In this
Jepsen analysis, we develop new tests which show the MongoDB v0 replication protocol is intrinsically unsafe,
allowing the loss of majority-committed documents. In addition, we show that the new v1 replication protocol
has multiple bugs, allowing data loss in all versions up to MongoDB 3.2.11 and 3.4.0-rc4. While the v0 protocol
remains broken, fixes for v1 are available in MongoDB 3.2.12 and 3.4.0, and now pass the expanded Jepsen test
suite. This work was funded by MongoDB, and conducted in accordance with the Jepsen ethics policy.

1 Background

In the past year and a half, MongoDB has put a
good deal of work into improved read safety, enabled
by the adoption of their new replication protocol and
the WiredTiger storage engine. Dirty reads were ad-
dressed in 3.2 by introducing a majority read concern,
and stale reads were addressed with the introduction
of the linearizable read concern in 3.4. MongoDB con-
tracted with Jepsen to analyze the safety of these mech-
anisms, and adopted Jepsen linearizability tests as a
part of their continuous integration suite.

In November 2016, MongoDB requested Jepsen per-
form a followup analysis of a 3.4.0 release candidate
(3.4.0-rc3) to confirm whether their linearizable read
concern behaved as designed. We found critical de-
sign flaws in MongoDB’s old replication protocol (v0),
and multiple bugs in the new replication protocol (v1).
These errors allowed (and, for any cluster running the
v0 protocol, still allow) MongoDB to lose acknowledged
updates even at the strongest (majority) level of write
safety. We’ll begin with the v0 replication protocol,
show how its successor v1 addresses its design flaws,
then discuss the bugs we found in v1—and their respec-
tive resolutions in 3.2.12 and 3.4.0.

2 Protocol Version 0

MongoDB’s original replication protocol aims to pro-
vide consensus over a log of database operations: the
oplog. In each replica set, nodes vote to elect a primary
node, which will lead changes to the oplog. That pri-
mary accepts and orders client operations (e.g. insert
a document, increment some field in a given document,
etc.), appends them to its oplog, and applies those oper-
ations in order. Secondary nodes periodically request
fragments of the oplog from the primary1, saying “I
have oplog entries through time t; please provide all
subsequent operations.” This ensures that secondaries
eventually receive the same log entries as the primary.

If two nodes have the same oplog, and operations are
deterministic, then both nodes can independently ap-
ply log operations to their local state to obtain identical
successor states. Consensus on operations in the log
therefore provides a replicated state machine. In Mon-
goDB, that state machine is the storage engine used
for documents and indices—usually an mmap’ed file or
WiredTiger.

This algorithm works so long as nodes never fail. How-
ever, our primaries likely will fail, and we will need
to elect new ones. With multiple primaries, our job
becomes harder: how do we ensure that oplog entries
are stable? Imagine a secondary with oplog entries
[a b c] discovers a primary with oplog [a b d e].
That secondary cannot blithely continue appending en-

1Secondaries in MongoDB are allowed to pull oplogs from other secondaries, not just the primary; so long as the secondary’s oplog is
more up to date. We assume, for clarity, that operations are directly replicated from the primary.

1

https://aphyr.com/posts/322-jepsen-mongodb-stale-reads
http://jepsen.io
http://jepsen.io/ethics.html
https://docs.mongodb.com/v3.2/reference/read-concern/#readconcern.%22majority%22
https://docs.mongodb.com/v3.4/reference/read-concern/#readconcern.%22linearizable%22
https://evergreen.mongodb.com/build/mongodb_mongo_master_ubuntu1404_jepsen_bf4385aed5e528a8cf1edb7955c8c2164dda04f0_16_10_28_14_33_06


tries, because the two replicas have diverged: c vs d.
Nodes could return different responses to queries—
and subsequent operations, like e, might not apply
cleanly. We must instead roll back the state machine
to the last common point [a b], and then apply the
new primary’s operations [d e]. In fact, MongoDB
does exactly this: when a secondary detects its oplog
has diverged, it identifies affected documents, dumps
their current state to a file on disk, catches up to the
primary, then replaces those documents with copies
taken from the current primary. Then it can proceed
as normal.

This creates some difficulties. In particular, since
nodes apply operations to their state machines imme-
diately, our secondary will have applied c already, and
could have responded to queries with c’s effects. If c in-
serted a document, that document would be visible to
clients, then lost. Clients could interpret this as a lost
update or a dirty read, depending on how the insertion
of c completed.

For this reason, distributed logs typically maintain a
commit point: the furthest index in the log which is
known to be stable. Operations before the commit point
will never be undone. Operations after the commit
point are in flux: they may or may not become durable.
If we can provide this property, we can avoid the roll-
back problem by only applying committed operations
to the state machine. MongoDB doesn’t do this—it ap-
plies operations as soon as they’re received. This is
why you can’t trust the state on any given replica: dirty
reads are a consequence of applying non-durable oper-
ations.

Protocol v0 can’t prevent dirty reads, but it can prevent
lost updates by deferring a successful response until it
can prove that the given request will be durable. If an
update doesn’t succeed, we can’t blame the database
for losing it. If we perform updates with the majority
write concern, MongoDB will not acknowledge our up-
date until a majority of nodes have accepted it. The
question becomes: is an operation replicated to a ma-
jority of nodes durable? Equivalently, is it possible for
any node to become a primary without that operation?

Clearly, durability hinges on how we vote for primaries.
We cannot elect any node at random, because we might
choose a node from the minority which did not receive
that operation. We must pick, informally speaking, the
newest node available. But which node is newest?

In VoltDB 6.3, the node with the longest log was pre-
sumed to be authoritative. However, this is no guaran-
tee of correctness: we could perform many unacknowl-
edged operations on an isolated primary, while a fully

connected one performs fewer, majority-acknowledged,
operations. Picking the longer log would throw away
those successful operations and preserve the failed
ones!

Instead, MongoDB assigns a number to each log en-
try: the optime. Nodes will veto the election of any can-
didate with a lower optime than them, which implies
leaders have an optime at least as high as any majority-
committed operation. Optimes are monotonic on any
given node: each operation the primary appends to the
oplog has a strictly higher optime than the previous
one. However, monotonicity is not sufficient. For in-
stance, we could assign sequential integers as optimes,
which has exactly the same problem as the longest-
log approach: isolated nodes with more attempted ops
could win elections.

To address this, MongoDB also pins optimes to the lo-
cal system clock (incremented to preserve monotonic-
ity where necessary). If we assume that clocks are
perfectly synchronized, this implies that a new leader
will have all operations from the most recent primary
to make updates. There is, however, a problem with
this approach: just as with the longest-log strategy, we
have no guarantee that the chronologically most recent
primary is actually authoritative.

Let nodes A, B, and C form a replica set, and let A be a
primary node, which has become isolated from the clus-
ter for 10 seconds. At wall-clock time 10, A receives
two writes w1 and w2 from clients, which it cannot
replicate, but nonetheless appends to its oplog at op-
times 10 and 11 respectively. Concurrently, node B
wins an election without w1 and w2, and processes a
single write w3, which it assigns optime 10, and repli-
cates to node C. Now isolate B, and rejoin A. If A and C
hold an election, A will have the higher optime (11 vs
10) and will become the new primary. Failed writes w1
and w2 are preserved, and the majority-acknowledged
write w3 is lost.

This scenario may seem unlikely, requiring carefully
selected partitions to occur in quick succession, but
recall that in real computers, our clocks are not well-
synchronized. They may differ by seconds, weeks, or
even years. This widens the window of concurrency
for data loss whenever primaries are isolated. The
broader the clock drift, the more likely we are to lose
data by electing an outdated node. The window is
somewhat limited by the fact that secondaries will ad-
vance their clock to the primary’s clock once they re-
ceive operations from it, but given time to run inde-
pendently, an isolated primary with a fast clock will
eventually outrace a majority-connected primary with
a slower clock.

2

https://aphyr.com/posts/331


In short, MongoDB’s v0 replication protocol does not
provide consensus: it relies on synchronized clocks,
and even where clocks are synchronized, can become
skewed when many operations arrive at the same
timestamp.

3 Verification

As before, we aim to verify that MongoDB provides lin-
earizability on individual documents by performing a
mix of reads, writes, and compare-and-set operations
across a five node cluster, which comprises a single,
non-sharded replica set.

Previous Jepsen tests of MongoDB waited a good deal
of time between successive faults, and allowed per-
fectly synchronized clocks. While they exposed other
errors around dirty and stale reads, they failed to iden-
tify the potential for lost updates described above. To
reliably expose that behavior, we’ll redesign Jepsen’s
nemesis, which introduces faults into the cluster—to
specifically create isolated primaries with a fast clock.

We proceed in three phases: isolate, kill, and stop.
To isolate, we identify all nodes which consider them-
selves a primary, and cut off their connections to the
rest of the cluster. Then we advance those nodes’ clocks
by two minutes, so that any requests they receive will

have an optime significantly higher than the rest of the
cluster. Depending on priorities and timeouts, Mon-
goDB may opt to preserve a current primary instead of
undergoing a fresh election. To force an election every
time, we kill all primaries before recovering. Finally,
we recover the replica set by resetting all clocks, stop-
ping all network partitions, and restarting all downed
nodes.

We’ll run this nemesis by repeatedly isolating all pri-
maries, waiting 30 seconds for their state to diverge,
then killing primaries and immediately recovering the
cluster, followed by another 30 seconds for recovery.

Jepsen’s linearizability tests are sufficient to show this
fault, but because their verification is expensive, they
perform only a few writes per second. We can find
errors faster by designing a test specifically for lost
updates. We repeatedly insert documents using ma-
jority write concern, while the nemesis isolates, kills,
and recovers the cluster. After a quiescence period, we
perform a few final read operations to check and see
what documents are still present. If any successfully
inserted documents are missing from the final read, we
can conclude that MongoDB lost updates.

Protocol version 0 fails this test spectacularly: out of
4525 attempted inserts, 322 were preserved, and 93
were acknowledged, then lost.

{:valid? false,
:lost
"#{2492 2495 2502 2504 2509 3293 3300 3303 3312 3314 3317 3319 3326

3328..3329 3335 3339..3340 3346 3348 3351..3353 3357 3362..3363 3367
3370..3372 3376 3381..3382 3384 3388 3395 3400..3401 3405..3406 3408 3412
3418 3424 3429..3431 3434 3438 3440 3443..3445 3447 3449..3450 3454 3456
3459 3463 3468 3470 3474 3476..3478 3484 3492..3493 3495..3496 3499 3501
3508 3510 3513..3514 3516 3521..3524 3526 3530 3536 3542 3545 3547 3549
3552 3555..3556 3558}",

:recovered
"#{9 12..13 15 21 27 1353 1357 1360..1361 1366 1368 2078 2081 2084 2086

2088..2089 3084..3085 3092 3098..3099 3103 4181 4184 4188..4189 4191
4204}",

:ok
"#{...}",
:recovered-frac 6/905,
:unexpected-frac 0,
:unexpected "#{}",
:lost-frac 93/4525,
:ok-frac 322/4525}

To reiterate, this is a design flaw of the v0 replication
protocol itself, not a bug; there are no plans to fix it.
Every version of MongoDB, including the recently re-

leased 3.4.1 & 3.5.1, exhibits this behavior, and future
versions likely will as well. The solution is to switch to
MongoDB’s newer replication protocol: v1.

3

https://aphyr.com/posts/322-jepsen-mongodb-stale-reads
https://github.com/jepsen-io/mongodb/blob/6cbb2291aad2468f872c1dad8731cfe42168164d/src/jepsen/mongodb/core.clj#L433-L490
https://github.com/jepsen-io/mongodb/blob/6cbb2291aad2468f872c1dad8731cfe42168164d/src/jepsen/mongodb/core.clj#L456-L469
https://github.com/jepsen-io/mongodb/blob/6cbb2291aad2468f872c1dad8731cfe42168164d/src/jepsen/mongodb/core.clj#L470-L479
https://github.com/jepsen-io/mongodb/blob/6cbb2291aad2468f872c1dad8731cfe42168164d/src/jepsen/mongodb/core.clj#L481-L486
https://github.com/jepsen-io/mongodb/blob/6cbb2291aad2468f872c1dad8731cfe42168164d/src/jepsen/mongodb/core.clj#L492-L499
https://github.com/jepsen-io/mongodb/blob/6cbb2291aad2468f872c1dad8731cfe42168164d/src/jepsen/mongodb/document_cas.clj
https://github.com/jepsen-io/mongodb/blob/6cbb2291aad2468f872c1dad8731cfe42168164d/src/jepsen/mongodb/set.clj
https://github.com/jepsen-io/mongodb/blob/6cbb2291aad2468f872c1dad8731cfe42168164d/src/jepsen/mongodb/set.clj
https://jepsen.io/analyses/mongodb-3-4-0-rc3/protocol-v0-lost-inserts-20161117T005938.000Z.zip


4 Protocol Version 1

Faced with the unreliability of clocks—especially in
virtualized environments—MongoDB has devised a
second-generation replication algorithm which aims to
address the design flaws in v0, as well as reducing
failover times and improving election safety. Protocol
v1 is available in version 3.2 and higher, and is the de-
fault for newly created replica sets.

Version 1 adopts many features from the Raft consen-
sus algorithm. Election IDs, derived from the candi-
date’s monotonic wall clock, were added to v0 to allow
clients to determine which primary was newer. How-
ever, because candidate wall clocks may not be syn-
chronized, clients might assume old primaries were in
fact newer. In v1, election IDs are replaced by logical
terms: instead of being derived from the candidate’s
wall clock, and incrementing only on successful elec-
tion, they are now integers incremented on every elec-
tion attempt. Logical terms means nodes in v1 can only
vote once per term; in v0, nodes are only prevented
from double-voting by a 30-second cooldown, which is
not entirely reliable.

In addition, optimes are no longer simple monotonic
timestamps in v1, but a tuple of [term, timestamp],
which lets MongoDB preserve operations from the logi-
cally most recent primary, instead of the primary with
the highest wall clock. In Raft, log entries are iden-
tified by sequential integer indices: 0, 1, 2, and so
on. MongoDB uses non-contiguous, but still mono-
tonic, timestamps as log indices. Monotonicity is as-
sured because the election process requires that only
nodes with the highest term from a successful election,
and all majority-replicated entries from that term, can

become primaries; and newly elected primaries con-
strain their generated timestamps to be at least as
high as the most recent timestamp in the oplog. Where
Raft ensures log contiguity by referring to the previ-
ous index, MongoDB refers to the previous timestamp.
We can therefore form a bijection between Raft in-
dices and MongoDB timestamps—MongoDB’s v1 oplog
is, in essence, a sparse Raft log. There are some
differences—MongoDB secondaries can pull data from
each other, instead of a primary, but we’ll elide those
here.

Where Raft applies only committed operations to its
state machine, MongoDB applies operations as soon
as they are received. Therefore, any replica in v1 may
contain invalid state: dirty reads are still allowed, and
rollbacks still occur. However, WiredTiger supports
snapshots of the database, and MongoDB uses this to
maintain a snapshot of the last known committed state.
Queries at the majority read concern read from this
(possibly stale) snapshot, rather than the dirty, most
current state. With linearizable read concern, a pri-
mary performs a read from its uncommitted current
state, then blocks until that state is committed, pre-
venting both stale and dirty reads.

This snapshot approach comes with tradeoffs:2 Mon-
goDB can provide dirty but less stale reads on sec-
ondary nodes without the latency overhead of a fully
linearizable read. However, the snapshot approach
still requires rolling back the state machine when pri-
maries diverge. Bugs in the rollback process have led
to the loss of committed writes but these problems are
generally being ironed out.

Unfortunately, as you probably already know, comput-
ers.

{:valid? false,
:lost "#{1555 1557 1561 ... 4880..4881 4884}",
:recovered "#{365 906 912 ... 3716 3724..3726}",
:ok "#{178 182 184 ... 6069..6071 6075 6077}",
:recovered-frac 16/3039,
:unexpected-frac 0,
:unexpected "#{}",
:lost-frac 139/2026,
:ok-frac 515/6078}

In this test of MongoDB 3.4.0-rc3, with the v1 replica-
tion protocol, MongoDB lost 417 successfully inserted
documents—even with majority write concern. That’s
almost half of the 932 acknowledged inserts (of 6078

attempts).

In Raft, primaries check the current term with ev-
ery message: if the term changes, they know that a
newer leader has come to power. Secondaries also

2Note that this is not the same tradeoff made by other consensus systems like Consul, etcd, and Zookeeper. Those systems only apply
committed updates to the state machine, but allow users to choose between linearizable reads which go through consensus, and sequentially
consistent (e.g. stale) reads against any replica. Unlike MongoDB, those systems do not allow dirty reads.

4

https://www.mongodb.com/presentations/replication-election-and-consensus-algorithm-refinements-for-mongodb-3-2
https://www.mongodb.com/presentations/replication-election-and-consensus-algorithm-refinements-for-mongodb-3-2
raft.github.io
https://jira.mongodb.org/browse/SERVER-25145
https://jira.mongodb.org/browse/SERVER-27403
https://jira.mongodb.org/browse/SERVER-27403
https://jepsen.io/analyses/mongodb-3-4-0-rc3/protocol-v1-rc4-lost-inserts-20161121T175004.000Z.zip
https://jepsen.io/analyses/mongodb-3-4-0-rc3/protocol-v1-rc4-lost-inserts-20161121T175004.000Z.zip


use the term to verify that they’re accepting writes
from the most recent primary, ignoring messages from
older terms. However, in 3.4.0-rc3, MongoDB could ac-
knowledge writes from prior terms: the primary only
checked to see that it was still a primary, rather than
verifying that the term hadn’t changed. In addition,
heartbeat messages received by a stale primary could
allow it to advance its commit point, acknowledging
writes which were not in fact durable. Both of these
issues were patched in 3.4.0-rc4.

Unfortunately, 3.4.0-rc4 also lost acknowledged writes,
because secondaries didn’t check to see whether they
were replicating from a newer node. They ignored
terms and simply compared timestamps. Both of
these bugs essentially stem from the legacy v0 proto-
col: some code that was written under v0’s assump-
tions that timestamps indicated the most authoritative
log, wasn’t updated to reason using v1’s logical terms.

This bug was fixed in 3.2.12, 3.4.0, and the develop-
ment release 3.5.1: all three now preserve acknowl-
edged writes in Jepsen’s test of this isolation & clock-
skew scenario. Of course, Jepsen cannot guarantee cor-
rectness, and additional bugs may be lurking in the
code. For example, a recently discovered race condition
in the voting process could allow secondaries to forget
about votes, potentially voting twice if a node restarts
during an election.

5 Discussion

MongoDB’s version 0 replication protocol is inherently
unsafe. Even in the just-released 3.4.1 it allows the
loss of majority-acknowledged documents when pri-
maries diverge with skewed clocks. Although v1 has
been the default for newly created replica sets since
MongoDB 3.2, there remain many production deploy-
ments of the v0 protocol, and I recommend they switch
to v1 as soon as possible.

Protocol version 0 remains popular with users of ar-
biters, especially for three-datacenter deployments
where one datacenter serves only as a tiebreaker.
Specifically, when two DCs are partitioned, but an ar-
biter can see both, v1 allows the arbiter to flip-flop be-
tween voting for primaries in both datacenters, where
v0 suppresses that flapping behavior. In both proto-
col versions, in order to preserve write availability in
both datacenters, users cannot choose majority write
concern. This means that when inter-DC partitions
resolve, successful writes from one datacenter can be
thrown away.

I recommend that two-DC users avoid arbiters in favor
of standard replicas in a 2/3 or 4/1 split, with a majority
in a primary DC. This allows the use of majority write
concern with single-DC latencies in the primary DC,
handles the loss of the secondary DC transparently,
and in the event the primary DC fails, administrators
can fail over (possibly losing a window of acknowledged
writes) by reconfiguring the secondary DC’s replica set.
Users with three datacenters have a choice between
keeping a majority in a single DC (lowering latencies
in the happy case), or spreading nodes evenly between
DCs (preserving safety and liveness in the event any
DC fails, at the cost of inter-DC latency). If you must
use arbiters, stick with protocol v0 to prevent flapping,
but be cognizant of the risks.

Protocol v0 can also preserve more writes made with
single-node write concern than v1. Of course, writes to
a minority of nodes are not guaranteed to be durable,
but many users prefer lower latency to safety, and want
to preserve as many incomplete writes as possible.
MongoDB is working on improving the v1 protocol to
recover safely-applicable writes from reachable nodes
during primary elections, which should make the v1
upgrade more practical. Users of 3.4.0 and higher can
increase settings.catchUpTimeoutMillis to give
newly elected primaries more time to scavenge incom-
plete writes.

Now, for version 1: users of the v1 replication protocol
in 3.4.0-rc4 (and prior versions) are also vulnerable to
data loss, due to multiple implementation bugs where
terms were ignored in favor of wall-clock timestamps.
The general release of 3.4.0 fixes these bugs, and ad-
ditional fixes are available in 3.4.1. Users should up-
grade to 3.4.1 to avoid these risks.

Note that while the v1 replication protocol adopts ideas
from the Raft consensus algorithm, v1 is not Raft. The
use of rollbacks, for instance, introduces new complex-
ities. MongoDB also allows secondaries to replicate
from other, more up-to-date secondaries, instead of
from the primary. Furthermore, many of the atomic
state transitions in Raft–for instance, voting–are not
serialized through the log and applied to the state ma-
chine once committed; rather, MongoDB uses mutexes
and direct updates of the storage system to handle
meta-operations. If that mutex scope is not enforced
carefully concurrency errors can result. MongoDB con-
tinues to refine their implementation, and will likely
streamline it once v0 is deprecated.

As always, MongoDB users have a choice of write con-
cern: how many nodes the primary will wait for before
acknowledging a write. Many production users con-
tinue to use one- or two-node write concerns, instead of

5

https://jira.mongodb.org/browse/SERVER-27053
https://jira.mongodb.org/browse/SERVER-27053
https://github.com/mongodb/mongo/commit/8347e322cd46e8ee847e1730a7e94ea8e3981c53#diff-0309ac14fcb79e4e7df819103ab23254R1626
https://jira.mongodb.org/browse/SERVER-27149
https://github.com/mongodb/mongo/commit/138402742f13b1cf85b021966eb27f2e33667cca#diff-64adfcffbeb50a1887b7aa86d2689bfcL1227
https://github.com/mongodb/mongo/commit/138402742f13b1cf85b021966eb27f2e33667cca#diff-64adfcffbeb50a1887b7aa86d2689bfcL1227
https://jira.mongodb.org/browse/SERVER-27157
https://jira.mongodb.org/browse/SERVER-27157
https://docs.mongodb.com/manual/reference/replica-configuration/#rsconf.protocolVersion
https://docs.mongodb.com/manual/reference/replica-configuration/#rsconf.protocolVersion
https://docs.mongodb.com/manual/tutorial/add-replica-set-arbiter/
https://docs.mongodb.com/manual/tutorial/add-replica-set-arbiter/
https://jira.mongodb.org/browse/SERVER-27403
https://jira.mongodb.org/browse/SERVER-27403
https://jira.mongodb.org/browse/SERVER-27157


majority. Users should use majority write concern for
any data they must keep; otherwise they run the risk
of losing updates in a rollback.

MongoDB has devoted significant resources to im-
proved safety in the past two years, and much of that
ground-work is paying off in 3.2 and 3.4. Dirty reads,
which we covered in the last Jepsen post, can now be
avoided by using the WiredTiger storage engine and
selecting majority read concern. Because dirty reads
can be written back to the database in read-modify-
update cycles, potentially causing the loss of commit-
ted writes, users of ODMs and other data mappers
should take particular care to use majority reads un-
less making careful use of findAndModify.

Finally, stale reads are preventable in MongoDB 3.4.0
and higher through the use of the linearizable read con-

cern. Users should use linearizable reads to ensure
the visibility of writes when communicating via side-
channels, or whenever the most recent committed state
is required. When the most recent uncommitted, pos-
sibly invalid state will suffice, a standard read on a
primary will have lower latency.

This table shows the consistency anomalies possible
in recent releases of MongoDB when the strongest op-
tions are used (protocol v1, majority writes, lineariz-
able reads). Majority reads were introduced in 3.2.x
and should have prohibited dirty reads, but given
committed writes could be lost in 3.2.11, it’s unclear
whether preventing dirty reads is all that meaning-
ful. Linearizable reads were introduced in 3.4.x, but
again, are not particularly meaningful when commit-
ted writes can be rolled back.

Version Lost updates Dirty Reads Stale Reads

3.0.14 Allowed (no v1) Allowed (no maj. read) Allowed (no lin. read)
3.2.11 Allowed (v1 bugs) Kinda Allowed (no lin. read)
3.2.12 Prevented Prevented Allowed (no lin. read)
3.4.0-rc3 Allowed (v1 bugs) Kinda Kinda
3.4.0-rc4 Allowed (v1 bugs) Kinda Kinda
3.4.0 Prevented Prevented Prevented

The v0 protocol (and of course, any test with non-
majority writes) continues to lose data in Jepsen tests.
With the v1 protocol, majority writes, and lineariz-
able reads, MongoDB 3.4.1 (and the current develop-
ment release, 3.5.1) pass all MongoDB Jepsen tests:
both preserving inserted documents, and linearizable
single-document reads, writes, and conditional up-
dates. These results hold during general network par-
titions, and the isolated & clock-skewed primary sce-

nario outlined above. Future work could explore the
impact of node crashes and restarts, and more general
partition scenarios.

This research was funded by MongoDB, and conducted
in accordance with the Jepsen ethics policy. My sincer-
est thanks to the MongoDB team for their assistance—
especially Dan Pasette, Jonathan Abrahams, Eric
Milkie, and Andy Schwerin.

6

https://aphyr.com/posts/322-jepsen-mongodb-stale-reads
https://aphyr.com/posts/332-jepsen-crate-0-54-9-version-divergence
https://aphyr.com/posts/332-jepsen-crate-0-54-9-version-divergence
https://aphyr.com/posts/322-jepsen-mongodb-stale-reads
https://docs.mongodb.com/manual/reference/read-concern/#readconcern.
http://jepsen.io/ethics.html

	Background
	Protocol Version 0
	Verification
	Protocol Version 1
	Discussion

