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In February 2017, we discussed data loss and fixes in MongoDB 3.4.0-rc3’s v0 and vl replication protocols. In
this Jepsen report, we will verify that MongoDB 3.6.4’s sharded clusters offer comparable safety to non-sharded
deployments. We’'ll also discuss MongoDB’s new support for causal consistency (CC) in version 3.6.4 and 4.0.0-
rcl, and show that sessions prevent anomalies so long as user stick to majority reads and writes. However, with
MongoDB’s default consistency levels, CC sessions fail to provide the claimed invariants. This work was funded
by MongoDB, and conducted in accordance with the Jepsen ethics policy.

1 Background

MongoDB is a long-time user of Jepsen. Over the past
three years, Jepsen has performed several analyses for
MongoDB, and MongoDB has integrated an expansive
Jepsen test suite into their CI system. In March, Mon-
goDB requested Jepsen perform an analysis on a pre-
viously untested configuration: sharded clusters. We
also pursued new research into modeling and verifying
causal consistency, a new safety feature in MongoDB
3.6. First, we will verify that sharded clusters offer
comparable safety to individual replica sets in version
3.6.4, and then we’ll discuss the anomalies we uncov-
eredin versions 3.6.4 and 4.0.0-rc1 with our new causal
consistency tests.

2 Sharded Clusters

Sharded clusters split a collection of documents into
parts, called shards, based on a single field in each
document: the shard key. Each shard is stored on
an independent MongoDB replica set. A router pro-
cess, called mongos, routes client requests to the appro-
priate replica set. A dedicated MongoDB replica set,
called configsvr, maintains the cluster state includ-
ing the mapping of shards to replica sets.

Since the size of shards may change over time, Mon-
goDB further divides shards into chunks. If a shard
grows too large, a balancer process, driven by the config
server, can produce a more even distribution by split-
ting and moving chunks to other shards.

2.1 Methods

We repeated our tests from prior MongoDB analy-
ses with sharded clusters. Our cas-register test veri-
fies that single documents support linearizable reads,
writes, and compare-and-set operations. Because this
test is computationally expensive, we supplement it
with a set test, which verifies that compare-and-set
operations are sequentially consistent by adding ele-
ments to a single document, and verifying that all ac-
knowledged elements are present in a final read. This
test is faster and cheaper to verify, because, we just
care that each op shows up in final read. This allows
us to check more events and catch rare cases of lost
updates.

We set up a cluster of 5 nodes with a configurable num-
ber of routers and shards, each shard being a replica
set. Each node runs one mongod configsvr process,
a mongod process per shard, and at most one mongos
router to accept requests. The number of routers in the
cluster can be limited as well.

Sharded clusters have the added complexity of chunk
migrations, which offers significant potential for data
loss if mishandled. We therefore designed a bal-
ancer nemesis, which combines network partitions and
moveChunk commands to move acknowledged data un-
der adverse conditions. We choose chunks containing
recently written-to document IDs, move them to new,
randomly selected shards, then immediately partition
the network and heal it some time later.
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Figure 1: Topology of a sharded cluster with two shards, including a majority-halves partition splitting nodes
into two isolated groups: a majority component with three nodes, and a minority component with two.

2.2 Results

We know that MongoDB can lose committed writes for
all levels of write concern less than majority, since
those writes could be rolled back by newer primaries,
regardless of whether the journaled flag is enabled.
This is a documented behavior for MongoDB replica
sets, and sharded clusters are no different. In this
set test against a sharded cluster, with write concern
journaled, MongoDB lost 543 out of 6095 successfully
acknowledged writes.

Recovered OK
1/3048 229/254

Lost
181/2032

This result is unsurprising, as sharded clusters only af-
fect where data is located not the replication protocol
for the data within a shard.

What about majority writes and linearizable
reads? After weeks of testing both insert-only and
update-heavy workloads against sharded clusters,
we’ve found that MongoDB’s v1 replication protocol ap-
pears to provide linearizable single-document reads,
writes, and compare-and-set, through shard rebal-
ances and network partitions.

Running fewer mongos routers than nodes in the test

lowers the throughput of the test, possibly masking un-
common concurrency errors. However, we do not have
any evidence that mongos introduces linearizability vi-
olations.

3 Causal Consistency

Causal consistency (CC) is a consistency model for dis-
tributed databases, which guarantees that operations
that are causally related are always observed in the
same order. For instance, replies to a question should
appear only if the question is also visible, never on
their own. In this model, operations that have no de-
pendency relationship are said to be concurrent, and
concurrent operations may have no apparent fixed or-
der.

Causal is one of many middle grounds between eventu-
ally consistent and linearizable systems. In eventually
consistent systems, operations can be observed in any
order so long as they eventually converge. And in lin-
earizable systems, operations must appear to occur in
the same order to every single observer, with hard real-
time bounds. Causal consistency allows clients to only
wait for a subset of dependent operations rather than
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waiting for a total order of all operations. This is es-
pecially useful when a total order is too expensive or
impossible to provide and allows implementations to
offer improved availability.

Thus far, causal consistency has generally been limited
to research projects, like COPS, Bolt-on Causal Con-
sistency, and AntidoteDB; MongoDB is one of the first
commercial databases we know of which provides an
implementation.

So how does MongoDB approach causal consistency?
If we identify a MongoDB collection as a set of read-
write registers, there are four guarantees that Mon-
goDB claims for causal consistency':

Read your writes: Read operations reflect
the results of write operations that precede
them.

Monotonic reads: Read operations do not
return results that correspond to an earlier
state of the data than a preceding read op-
eration.

Monotonic writes: Write operations that
must precede other writes are executed be-
fore those other writes.

Writes follow reads: Write operations that
must occur after read operations are exe-
cuted after those read operations.

MongoDB clients capture causality with the concept
of a session: a single-threaded context in which each
database operation is causally subsequent to the previ-
ous operation. Sessions exist alongside client connec-
tions, and are associated with a single client. Sessions
are passed to the call site with each read and write,
providing the server with the highest server times that
the client has seen.

3.1 Methods

We implemented a new kind of Jepsen test to check
causal consistency, adapted from Bouajjani, Enea,
Guerraoui, and Hamza’s techniques On Verifying
Causal Consistency. We model the relationship be-
tween operations as a causal order (CO), which repre-
sents the set of operations visible to each operation we
perform. We use independent keys and a single session

Replica sets use a log of operations (the oplog) in
which each operation is identified by an optime. Op-
times are a tuple of an election ID and a timestamp,
which uniquely identify every operation. Nodes ad-
vance their timestamps monotonically to match the lo-
cal wall clock, or, like a Lamport clock, the highest ob-
served timestamp from any other node.?

Sessions use the timestamp to provide a monotonic or-
dering relation for operations. When a session asks
a server to perform an operation, it includes the last
timestamp that session observed; the server must wait
until that timestamp has been reached to service the
request. This holds even between different shards: all
nodes across all replica sets essentially share a single
timestamp, whereas election IDs are only meaningful
within individual replica sets.

This provides monotonicity because once an operation
is majority committed to the oplog, no subsequent op-
eration can be majority committed with a lower times-
tamp. Likewise, when a majority read is performed
with a certain timestamp, that result can never be un-
observed by a majority reader with an equal or higher
timestamp.

Sessions expose their timestamp as a causal token?.
That token can be used to force one session to observe
the results of another. That is, users can store and
pass tokens to other clients, even other nodes, to pre-
serve causal ordering.

MongoDB’s sessions are a special case of causal consis-
tency: sessions capture a linear notion of causality in
which operations are totally ordered. In general, the
causal relationships between operations could be an
arbitrary directed acyclic graph (DAG). But in the lim-
iting case where every session performs only a single
operation, timestamps can be manually threaded from
session to session to construct arbitrary DAGs.

for each, which should produce a total order per key.

We perform five operations with our client linearly for
each CO: an initial read, a write of 1, a read, a write of
2, and a final read. These operations are represented
as :read-init, :write, :read, :write, and :read in
our histories. We expect to see nothing in the initial
read and mark this nil response as 0 in the history.
Then we execute our writes and reads, with each op-

1MongoDB’s explanation of these properties makes some implicit assumptions about dependencies and causal scope, which may be a bit
confusing. For a more thorough discussion of these properties, consider Viotti & Vukolié¢’s formulation of read your writes, monotonic reads,

monotonic writes, and writes follow reads.
2See also: https:/cse.buffalo.edu/tech-reports/2014-04.pdf

3These timestamps are cryptographically signed to prevent malicious clients from pushing nodes too far into the causal future, effectively

preventing them from servicing any further operations.
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Figure 2: Two concurrent sets of causally related operations. On the left is a graph that forks, and on the right
is a linear chain. Note that {G,H,I} is not causally related to {C,D,E}, despite both depending on {A,B}; the two
forks are concurrent.
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eration depending on the prior one. Our checker ex-
pects the register to advance through the states [0,
1, 2]. That is, our history should be: :read-init
0, :write 1, :read 1, :write 2, :read 2in ev-
ery CO. Anomalies become apparent when a CO does

not reflect the order that we executed (e.g. [0, 2, 1])
or if dependent operations are rolled back (e.g. [0, 1,
0]). Lastly, if :read-init observes a non-zero write
(e.g. [n, 1, 2] where n = 0), then we cannot validate the
causal order.

‘read “tib | — | fwrite |

—_—
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swrite 2 | — ‘leod
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Figure 3: Jepsen operations in a causal order.

3.2 Results

We uncovered clear evidence of causal consistency vio-
lations. So far, we’ve observed two types of anomalies.*

Process Function Value

nemesis :start [:isolated {“n5” #{*n2” ...}, ...}]
0 read-init 0

0 ‘write 1

0 read 1

0 ‘write 2

:nemesis :stop :network-healed

0 read 0

In this example, we perform two writes which Mon-
goDB acknowledges, during a network partition. Once
the partition heals, despite confirming the writes,
our final read returns the initial, blank state of the
register—as if those writes had never taken place.

Process Function Value

0 read-init 0

0 ‘write 1

0 read 1

0 ‘write 2

:nemesis :start [:isolated {“n5” #{“n2” ...} ...}]
:nemesis :stop :network-healed

0 read 1

The last read executes during a network partition, and
returns after the partition heals. We can see from the
final read that the value of the second write appears

4The first history is from key 73, and the second is from key 158.

to have been rolled back, rather than being cached for
the client.”

In this case, both COs were executed with write con-
cern wl, and read level local. The first anomaly,
where reads observe the uninitialized state of the CO,
disappears with read level majority. We did not ob-
serve any anomalies with write concern majority.’
MongoDB version 4.0.0-rc1 displayed comparable be-
havior. This issue is further described in SERVER-
35316.

4 Discussion

MongoDB and Jepsen have an established history of
public analyses and internal tests. This also makes
finding new bugs difficult. We have, by now, picked
much of the low-hanging fruit. Sharding has known
issues, but so far we haven’t uncovered any new ones.

We did, however, uncover problems with MongoDB’s
causal consistency: it doesn’t work unless users use
both read and write concern majority, and the causal
consistency documentation made no mention of this.
While MongoDB will reject causal requests with the
safer linearizable read level, and the unsafe write
concern unacknowledged, it will happily accept inter-
mediate levels, like write concern 2 or read level 1ocal.
Since many users use sub-majority operations for per-
formance reasons, and since causal consistency is typi-
cally used for high-performance local operations which

5The example histories above have been truncated for ease of understanding. Full Jepsen histories list both the invocation and completion
of client operations. Type : invoke marks the start of an operation, and : ok, :fail, or : info types denote the result (or non-termination)
of that operation. Here, we show only ops for : ok responses and the : info ops recording the nemesis’ state transitions.

6Jepsen and MongoDB suspect that write concern majority anomalies should exist, see https:/jira.mongodb.org/browse/

SERVER-35316.
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do not require coordination with other cluster nodes,
users could have reasonably assumed that causal ses-
sions would ensure causal safety for their sub-majority
operations; they do not.

Mongo has since added numerous warnings to the con-
sistency docs advising users that its guarantees apply
only to majority/majority operations, which should
help guide users toward using the feature correctly.

Even with causal sessions, sub-majority reads may fail
to observe causally prior successful writes, or fail to
observe previously read values, even with majority
write concern. Conversely, sub-majority writes may
be visible, then lost in the event of a leader tran-
sition, which means that successfully acknowledged
prior writes may not be observed by subsequent reads.
We interpret this as a violation of causal consistency.

MongoDB has closed this issue as working as designed,
arguing that with sub-majority writes and majority
reads, sessions actually do preserve causal consis-
tency:

Even with write concerns less than major-
ity, the causal ordering of the committed
writes is maintained. However, durability
is not guaranteed.

This interpretation hinges on interpreting success-
ful sub-majority writes as not necessarily successful:
rather, a successful response is merely a suggestion
that the write has probably occurred, or might later
occur, or perhaps will occur, be visible to some clients,
then un-occur, or perhaps nothing will happen whatso-

ever.”

We note that this remains MongoDB’s default level of
write safety.

If one considers every successful sub-majority write as
indeterminate®, this interpretation is defensible: ma-
jority reads will tell you whether or not a prior write
succeeded? and observe logically monotonic states of
the system. Writes are monotonic if observed by ma-
jority reads, and so on. This could offer performance
advantages where users are unable to make concur-
rent calls and wish to batch together several writes,

all of which will be read later to confirm their success,
and no concurrent operation will interfere with those
records. However, Jepsen believes users will find this
interpretation less intuitive.

Jepsen continues to recommend majority writes in
all cases, and majority reads where linearizable is
prohibitively expensive. Anything less than majority
writes can lose data, and anything less than majority
reads can read dirty data. MongoDB has discussed
making servers reject write concerns and read levels
below majority when using CC sessions, which might
help. We recommended MongoDB update their doc-
umentation so users are aware of the requirements
for using causal consistency, which was completed in
September 2018.

We typically choose causally consistent systems be-
cause they can be made totally available: even when
the network is completely down, every node can inde-
pendently make progress. In fact, slightly stronger
models like causal+ and real-time causal (RTC) are
proven to be the among the strongest consistency mod-
els achievable in totally available contexts. However,
MongoDB’s replication architecture is currently incom-
patible with a totally-available approach. Only leaders
can write, so some nodes must refuse some operations
when the leader is inaccessible, and refuse all writes
when no leader can reach a majority.

So why use MongoDB’s causally consistent sessions?
Because they offer stronger safety properties than ma-
jority/majority alone. For instance, majority/majority
allows you to observe a write, then un-observe it. Or
you can write something, then try to query it, and it
won’t be there. It'll show up... eventually! Causal elim-
inates these anomalies by forcing logical monotonicity.
So, if you're a user of MongoDB with write concern
majority and read level majority, we recommend us-
ing CC sessions in your applications. Furthermore,
users who need to ensure the order of operations be-
tween different clients should consider passing causal
timestamps between those clients via e.g. side chan-
nels.

MongoDB uses monotonic timestamps derived from
wall clocks, messages from other servers, and mes-

"In a sense, majority writes are also “best effort” delivery. For example, if a majority of nodes lost their disks concurrently, some
majority-committed writes could be lost! However, this failure mode is detectable; the system will fail to make progress when it occurs, and
operators know that data may have been lost. By contrast, write concerns less than majority could result in silent data loss. Silent write
loss can occur even with majority writes. (e.g. byzantine faults, like malicious nodes, or concurrent crashes followed by filesystem-level data
loss which reverts a majority of nodes to an earlier consistent snapshot of the log) However, we believe these failures are significantly less

likely than leader elections.

8This behavior is similar to what happens when a client experiences a network timeout: operations may or may not occur. To impress
upon users the fundamental uncertainty involved, perhaps MongoDB clients could throw network timeout errors instead of returning

successfully when servers acknowledge a sub-majority write.

90f course, if someone else updates a record between a session’s write and read, it may be impossible to ascertain whether the write

actually took place.
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sages from causal-enabled clients, as the link between
dependent operations. Two leaders with different
election IDs might have similar, locally monotonic,
timestamps. So causal sessions based on timestamps
alone could perform sub-majority operations on two
independently-evolving leaders while still observing a
monotonic timestamp order. That’s why we observe
anomalies with sub-majority operations: the causal
structure of MongoDB operations isn’t (in general) cap-
tured by timestamps alone.

Because MongoDB’s causal model requires majority
writes and majority reads, clients essentially pay the
latency and availability costs required for sequential
consistency, which forces a total order, rather than
the partial order required by causal. We believe that
MongoDB’s causal sessions might actually provide se-
quential consistency on individual keys. Due to limita-
tions in sharding, it’s unclear if this extends to multi-
ple keys.

Finally, there are significant limitations to our tests.
Our sharded tests assume a relatively uniform clus-

ter topology, where all MongoDB components parti-
tion in the same way. Non-homogeneous topologies
where we can partition configsvr and mongos pro-
cesses separately from shardsvr processes may find
unique anomalies. Starting and stopping and killing
various component processes may also provide inter-
esting results.

Our causal consistency test only measures a very
simple case: we test short time frames, on single
keys, against single nodes, from single client threads.
We suspect that writes to multiple nodes might be
required to observe causal violations with majority
writes and sub-majority reads. We also don’t check
how failures and process crashes influence causal or-
ders. Ultimately, there’s still a lot we don’t know!

This work was funded by MongoDB, and conducted in
accordance with the Jepsen ethics policy. My thanks to
Kyle Kingsbury for his invaluable contributions and re-
view, and to Christopher Meiklejohn, Peter Alvaro, and
the MongoDB team, especially Cristopher Stauffer, Max
Hirschhorn, Dan Pasette, and Misha Tyulenev.
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