
PostgreSQL 12.3
Kyle Kingsbury
2020-06-12

PostgreSQL is a widely-known relational database system. We evaluated PostgreSQL using Jepsen’s new trans-
actional isolation checker Elle, and found that transactions executed with serializable isolation on a single Post-
greSQL instance were not, in fact, serializable. Under normal operation, transactions could occasionally exhibit
G2-item: an anomaly involving a set of transactions which (roughly speaking) mutually fail to observe each other’s
writes. In addition, we found frequent instances of G2-item under PostgreSQL “repeatable read”, which is explic-
itly proscribed by commonly-cited formalizations of repeatable read. As previously reported by Martin Kleppmann,
this is due to the fact that PostgreSQL “repeatable read” is actually snapshot isolation. This behavior is allowable
due to long-discussed ambiguities in the ANSI SQL standard, but could be surprising for users familiar with the
literature. A patch for the bug we found in serializability is scheduled for the next minor release, on August 13th,
and the presence of G2-item under repeatable read could be readily addressed through documentation. This work
was performed independently, without compensation, and conducted in accordance with the Jepsen ethics policy.

1 Background

PostgreSQL is a major open-source relational database
with a 23-year history and a broad range of features.
While Jepsen’s work has traditionally focused on dis-
tributed systems, our tooling is readily applicable to
traditional, single-node databases. In this report, we
present the results of applying Jepsen’s generative con-
currency testing to PostgreSQL 12.3.

Prior to version 9.1, PostgreSQL’s documentation
claimed to offer up to serializability, “as if transactions
had been executed one after another, serially, rather
than concurrently…. The Serializable mode provides a
rigorous guarantee that each transaction sees a wholly
consistent view of the database.” However, this was
not true: PostgreSQL’s “serializable” was in fact snap-
shot isolation (SI).

Informally, snapshot isolated systems appear to start
each transaction with a fixed, instantaneous snap-
shot of the database, reflecting only committed state.
Writes performed in a transaction appear to apply
atomically at commit time, and a transaction can only
commit if no other transaction has modified the same
objects as the transaction has written, since the snap-
shot was taken. This is (as the paper which formal-
ized snapshot isolation made clear) not serializable:

transactions whose write sets do not intersect can com-
mit without observing each other’s effects, which could
lead to application-level consistency violations.

In version 8.0, PostgreSQL’s documentation clarified
that “in fact PostgreSQL’s Serializable mode does not
guarantee serializable execution in this sense,” and
went on to specify that PostgreSQL lacked a predicate
locking system.

In version 9.1, PostgreSQL contributors Grittner and
Ports added support for true serializability, based on
research by Cahill, Röhm, and Fekete into serializ-
able snapshot isolation (SSI). In short, SSI extends
SI by checking, at runtime, for a dependency relation-
ship between transactions called a dangerous structure:
a pair of adjacent read-write dependencies between
three transactions. Preventing these dangerous struc-
tures, in addition to snapshot isolation’s normal rules,
yields only serializable executions. For the last nine
years, PostgreSQL’s “serializable” mode has justifiably
claimed to offer serializability.

PostgreSQL’s “repeatable read” remains snapshot iso-
lation, but the concurrency control documentation sur-
prisingly does not mention the term. Instead, it offers:

The Repeatable Read isolation level only
sees data committed before the transac-

1

https://www.postgresql.org/
https://github.com/jepsen-io/elle
http://pmg.csail.mit.edu/papers/icde00.pdf
https://github.com/ept/hermitage
https://jepsen.io/ethics.html
https://www.postgresql.org/
https://www.postgresql.org/docs/9.0/transaction-iso.html
https://www.postgresql.org/docs/9.0/transaction-iso.html
https://jepsen.io/consistency/models/serializable
https://jepsen.io/consistency/models/snapshot-isolation
https://jepsen.io/consistency/models/snapshot-isolation
https://www.microsoft.com/en-us/research/wp-content/uploads/2016/02/tr-95-51.pdf
https://www.microsoft.com/en-us/research/wp-content/uploads/2016/02/tr-95-51.pdf
https://www.postgresql.org/docs/8.0/transaction-iso.html#XACT-SERIALIZABLE
https://www.postgresql.org/docs/9.1/release-9-1.html
https://drkp.net/papers/ssi-vldb12.pdf
https://courses.cs.washington.edu/courses/cse444/08au/544M/READING-LIST/fekete-sigmod2008.pdf
https://courses.cs.washington.edu/courses/cse444/08au/544M/READING-LIST/fekete-sigmod2008.pdf
https://www.postgresql.org/docs/12/transaction-iso.html
https://www.postgresql.org/docs/12/transaction-iso.html#XACT-REPEATABLE-READ


tion began; it never sees either uncom-
mitted data or changes committed dur-
ing transaction execution by concurrent
transactions… This is a stronger guaran-
tee than is required by the SQL standard
for this isolation level, and prevents all of
the phenomena described in Table 13.1 ex-
cept for serialization anomalies. As men-
tioned above, this is specifically allowed
by the standard, which only describes the
minimum protections each isolation level
must provide.

“Serialization anomalies” is a somewhat ambiguous
term: the documentation simply describes it as a re-
sult which is “inconsistent with all possible orderings
of running those transactions one at a time”. To better
understand what “serialization anomalies” specifically
entail, we devised an experiment.

2 Test Design

We designed a test harness for PostgreSQL using the
Jepsen testing library. Our test installs PostgreSQL
12.3-1.pgdg100+1 (the current stable version) on a sin-
gle Debian 10 node, or optionally connects to an exist-
ing PostgreSQL installation. We also evaluated ver-
sions 9.5.22, 10.13, and 11.8. Our test can kill Post-
greSQL processes in random order to help measure
crash safety, but our findings here do not require pro-
cess crashes to reproduce. We used the default config-
uration provided by PostgreSQL’s official Debian pack-
ages with only minor changes (e.g. for binding network
ports), and, during some tests, shortened autovacuum
naptime and enabled more detailed logging.

Our test workload generates randomized transactions
of append and read operations across an collection of
list objects, chosen with exponential frequency. Each
object is identified by a unique integer logical key. We
store each object as a row in one of several tables, cho-
sen by the hash of the key. Object keys are stored in
two fields: a primary key id, and an unindexed sec-
ondary key sk, which we use to test access by table
scans.1 The value of each list is stored as a comma-
separated TEXT column.

We append unique integer elements to a list identi-
fied by key (either via id or sk) using INSERT ... ON
CONFLICT DO UPDATE, or, alternatively, via an update,
checking to see if any rows were modified, then back-
ing off to an insert, and if that failed, updating again.
Reads return the current list of integers for a partic-

ular object, e.g. via SELECT (val) FROM txn0 WHERE
id = ?.

Our test applies these transactions to PostgreSQL us-
ing the JDBC PostgreSQL driver (version 42.2.12), and
analyzes the resulting history using the Elle transac-
tion isolation checker. Elle infers a transaction depen-
dency graph over experimentally recorded histories,
and searches for cycles (and non-cyclic anomalies) in
that graph. This allows us to detect a broad range
of anomalies from Adya, Liskov & O’Neil’s General-
ized Isolation Level Definitions, including G0 (dirty
write), G1a (aborted read), G1b (intermediate read),
G1c (cyclic information flow), G-single (read skew), and
G2-item (anti-dependency cycle). We also check for in-
ternal consistency, verifying that transactions observe
values consistent with their own prior writes, dupli-
cate effects, and garbage values (e.g. elements which
were never written).

3 Results

In most respects, PostgreSQL behaved as expected:
both read uncommitted and read committed prevent
write skew and aborted reads. We observed no internal
consistency violations. However, we have two surpris-
ing results to report. The first is that PostgreSQL’s “re-
peatable read” is weaker than repeatable read, at least
as defined by Berenson, Adya, Bailis, et al. This is not
necessarily wrong: the ANSI SQL standard is ambigu-
ous. The second result, which is definitely wrong, is
that PostgreSQL’s “serializable” isolation level isn’t se-
rializable: it allows G2-item during normal operation.

3.1 Repeatable Read

PostgreSQL’s “repeatable read” isolation level is ac-
tually snapshot isolation, and we observed no SI-
violating anomalies when using “repeatable read”.
In fact, the histories we recorded were consistent
with strong snapshot isolation, a stronger consistency
model which prohibits stale reads and other realtime
anomalies.

However, we observed numerous violations of repeat-
able read, as formally defined by Berenson, Adya, et
al. For example, consider this history, which produced
roughly 140 anti-dependency cycles per minute. Here’s
a short cycle from that history consisting of a trio of
transactions—each of which appeared to execute be-
fore the next.

1Neither process crashes, multiple tables, nor secondary-key access is required to reproduce our findings in this report. The technical
justification for including them in this workload is “for funsies”.

2

https://github.com/jepsen-io/jepsen/tree/master/stolon
https://github.com/jepsen-io/jepsen
https://github.com/jepsen-io/jepsen/blob/3caa87c1c2537adf80878e9f356a0a841c52f8fc/stolon/src/jepsen/stolon/db.clj#L270-L292
https://github.com/jepsen-io/jepsen/blob/3caa87c1c2537adf80878e9f356a0a841c52f8fc/stolon/src/jepsen/stolon/db.clj#L270-L292
https://github.com/jepsen-io/jepsen/blob/master/stolon/src/jepsen/stolon/append.clj
https://github.com/jepsen-io/jepsen/blob/master/stolon/src/jepsen/stolon/append.clj
https://github.com/jepsen-io/elle
http://pmg.csail.mit.edu/papers/icde00.pdf
http://pmg.csail.mit.edu/papers/icde00.pdf
http://www.vldb.org/conf/2006/p715-daudjee.pdf
http://jepsen.io.s3.amazonaws.com/analyses/postgresql-12.3/20200609T133356.000-0400.zip


r 190 [1 2] r 188 [4 5] a 188 8

a 190 4 a 190 5

rw

r 190 [1 2 4 5] r 188 [4 5]

rw

wr

The top transaction begins by reading key 190, and
finds the list [1 2]. The middle transaction appends
4 to key 190, resulting in the version [1 2 4]. Since
that write overwrote the state that the top transaction
read, we know that the middle transaction must have
executed after the top transaction. We call this rela-
tionship an anti-dependency, and represent it as an
edge labeled rw.

The middle transaction appended 5 to key 190, which
was then visible to the bottom transaction’s read of [1
2 4 5]. This write-read dependency is represented by
an edge labeled wr. However, the bottom transaction
read key 188, and did not observe the top transaction’s
append of 8. That anti-dependency implies the bottom
transaction must have executed before the top transac-
tion: a cycle!

This dependency cycle contains two anti-dependency
edges, which makes it a G2 phenomenon in the lan-
guage of Adya’s formalism. Since all of these reads oc-
curred when reading objects by their primary key2, it
is also G2-item: a phenomenon expressly prohibited
under Adya’s formalization of repeatable read. We be-
lieve this is one type of “serialization anomaly” referred
to in the PostgreSQL documentation.

However, these anomalies are allowable under ANSI
SQL’s definition of repeatable read, thanks to ambigu-
ously worded plain-English definitions of prohibited
phenomena. In fact, this ambiguity is part of what
prompted Berenson, Bernstein et al. to write A Cri-
tique of ANSI SQL Isolation Levels, and to formalize
the definition of snapshot isolation in the first place. In
that work, Berenson et al. develop two interpretations

of the ANSI anomalies: one strict, and one broad. They
argue that the strict interpretations fail to capture be-
haviors which are intuitively incorrect, and that ANSI
meant to define the broad ones.

Strict interpretations A1, A2, and A3 have
unintended weaknesses. The correct inter-
pretations are the Broad ones.

Under the broad interpretations preferred by Beren-
son et al., snapshot isolation is not comparable with
repeatable read: SI allows histories RR proscribes,
and vice versa. Under the strict interpretation, SI is
stronger than RR (indeed, SI is stronger than anomaly
serializable!), and these G2-item anomalies are al-
lowed under repeatable read.

Whether PostgreSQL’s repeatable-read behavior is cor-
rect therefore depends on one’s interpretation of the
standard. It is surprising that a database based on
snapshot isolation would reject the strict interpreta-
tion chosen by the seminal paper on SI, but on reflec-
tion, the behavior is defensible.

3.2 Serializable

A more serious problem arose when we tested Post-
greSQL’s serializable isolation level: it also exhibited
G2-item under normal operation. In this two-minute
test run, Jepsen detected six cases of G2-item. For ex-
ample, consider this pair of transactions, in which each
failed to observe the other’s insert:

a 1799 2 r 1798 nil

r 1799 nil a 1798 4 a 1798 5 r 1798 [4 5]

rwrw

Alternatively, consider the following trio of transac-
tions. The top transaction missed the middle transac-
tion’s creation of key 1670, which was observed by the
bottom, read-only transaction. However, that bottom
transaction failed, in turn, to observe the first trans-
action’s creation of key 1671. Notably, the read-write
transactions are serializable if taken by themselves.
The read-only transaction is necessary for this cycle:
it observes the effects of some, but not all, “logically
prior” transactions.

2Our tests support updates and reads both by primary key and by secondary key: a predicate read. This type of anomaly occurs in both
contexts.

3

http://pmg.csail.mit.edu/papers/icde00.pdf
https://www.microsoft.com/en-us/research/wp-content/uploads/2016/02/tr-95-51.pdf
https://www.microsoft.com/en-us/research/wp-content/uploads/2016/02/tr-95-51.pdf
http://jepsen.io.s3.amazonaws.com/analyses/postgresql-12.3/20200609T161421.000-0400.zip
http://jepsen.io.s3.amazonaws.com/analyses/postgresql-12.3/20200609T161421.000-0400.zip


a 1671 3 r 1670 nil

a 1670 3 r 1670 [3]

rw

r 1670 [3] r 1671 nil

wr

rw

Indeed, these dependency graphs correspond exactly to
examples 1 (“Simple Write Skew”) and 2 (“Batch Pro-
cessing”) from the PostgreSQL Serializable Snapshot
Isolation paper, shown below. Their SQL statements
are different, of course—but like Example 1, our first
cycle involves a pair of transactions which read one key
and write another, each failing to observe the other’s
effects; and our second involves a read-only transaction
which precedes, via two adjacent rw anti-dependencies,
a transaction which wrote state which the read-only
transaction observed. These cycles are precisely what
PostgreSQL’s SSI implementation is meant to prevent!

Every instance of G2-item we observed under serializ-
able isolation involved at least one read-write conflict
for a freshly inserted row. Cycles could involve rw anti-
dependencies on updates to existing rows, but at least
one insert appeared to be necessary.

Following a discussion with PostgreSQL contributors,
Peter Geoghegan identified the likely cause of this is-
sue: the conflict detection mechanism could, given
three concurrent transactions, incorrectly identify an

updating transaction’s transaction ID (XID) as respon-
sible for both the original and updated versions of a
tuple, rather than using the transaction ID which orig-
inally created the tuple. By flagging the wrong trans-
action as a potential conflict, it allowed a transaction
to commit while failing to observe a prior transaction’s
writes. Geoghegan, working with other members of the
PostgreSQL community, has written a patch to flag the
correct transaction ID, and added a regression test. In
their testing, this appears to resolve the issue.

This code has gone essentially untouched since the in-
troduction of serializable snapshot isolation in 2011.
Together, we confirmed that this bug was present in
PostgreSQL 9.5.22, 10.13, 11.8, 12.3, and 13; we as-
sume it is present in every extant version.

4 Discussion

In our testing of PostgreSQL 12.3, transactions exe-
cuted at read committed appeared correct: we never
observed G0 (dirty write), G1a (aborted read), or G1b
(intermediate read). PostgreSQL “repeatable read” ap-
pears consistent with strong snapshot isolation, but al-
lows G2-item, which is prohibited in formalizations of
repeatable read. However, this behavior could be inter-
preted as consistent with ANSI SQL repeatable read.
Finally, PostgreSQL “serializable” allows G2-item un-
der normal operation, due to a bug in the conflict detec-
tion mechanism. A patch has been committed, and this
class of serializability violations should be resolved in
the next minor release—presently scheduled for Au-
gust 13th.

PostgreSQL has an extensive suite of hand-picked
examples, called isolationtester, to verify concur-
rency safety. Moreover, independent testing, like
Martin Kleppmann’s Hermitage has also confirmed
that PostgreSQL’s serializable level prevents (at least
some!) G2 anomalies. Why, then, did we immediately
find G2-item with Jepsen? How has this bug persisted
for so long?

PostgreSQL’s isolation tests, Hermitage, and most
transactional Jepsen tests (prior to Elle) relied on exe-
cuting a handful of cleverly constructed transactions
with hand-proven invariants. For instance, this iso-
lationtester specification verifies serializability by per-
forming a sequence of transactions proposed by Fekete,
O’Neil, & O’Neil in A Read-Only Transaction Anomaly
Under Snapshot Isolation. Jepsen’s bank test is based
on a narrowly-defined class of transactions which pre-
serves a total-balance invariant under snapshot iso-
lation. Hermitage checks for G2-item by performing
a pair of symmetric read and update transactions—

4

https://drkp.net/papers/ssi-vldb12.pdf
https://drkp.net/papers/ssi-vldb12.pdf
https://www.postgresql.org/message-id/flat/db7b729d-0226-d162-a126-8a8ab2dc4443%40jepsen.io
https://www.postgresql.org/message-id/CAH2-Wzk%3D-gRrZP4mvsFeFN8VQDw2WNdS8AnJG8eX020Q7XSmMQ%40mail.gmail.com
https://www.postgresql.org/message-id/CAH2-Wzk%3D-gRrZP4mvsFeFN8VQDw2WNdS8AnJG8eX020Q7XSmMQ%40mail.gmail.com
https://git.postgresql.org/gitweb/?p=postgresql.git;a=commit;h=5940ffb221316ab73e6fdc780dfe9a07d4221ebb
https://git.postgresql.org/gitweb/?p=postgresql.git;a=commit;h=5940ffb221316ab73e6fdc780dfe9a07d4221ebb
https://git.postgresql.org/gitweb/?p=postgresql.git;a=blob;f=src/test/isolation/specs/update-conflict-out.spec;h=25c27d4ca6572ab5bdd99c099c86184b50817b26;hb=5940ffb221316ab73e6fdc780dfe9a07d4221ebb
https://www.postgresql.org/message-id/CAH2-Wzkk5CS2emjrftQXemjDVNkYSrUEXtHd-hoxBGsjSA01Ew%40mail.gmail.com
https://git.postgresql.org/gitweb/?p=postgresql.git;a=commit;h=5940ffb221316ab73e6fdc780dfe9a07d4221ebb
https://github.com/postgres/postgres/tree/master/src/test/isolation
https://github.com/postgres/postgres/tree/master/src/test/isolation
https://github.com/ept/hermitage/blob/master/postgres.md
https://github.com/postgres/postgres/blob/master/src/test/isolation/specs/serializable-parallel.spec
https://github.com/postgres/postgres/blob/master/src/test/isolation/specs/serializable-parallel.spec
https://www.cs.umb.edu/~poneil/ROAnom.pdf
https://www.cs.umb.edu/~poneil/ROAnom.pdf
https://github.com/jepsen-io/jepsen/blob/master/jepsen/src/jepsen/tests/bank.clj
https://github.com/ept/hermitage/blob/master/postgres.md#write-skew-g2-item


which does successfully demonstrate G2-item under
PostgreSQL “repeatable read”, but not under serializ-
able.

Elle, however, is different: it allows us to generate a
broad class of transactions, while still inferring strict
properties over the resulting histories. This property-
based approach allows us to catch unexpected behav-
iors that no one thought to explicitly test. In this
case, it identified the possibility that concurrent up-
dates and inserts could confuse the conflict-detection
mechanism into misidentifying which transaction was
responsible for a conflict.

That said, the list-append test we devised here veri-
fies only a handful of SQL operations over a simple
schema. Mature SQL databases like PostgreSQL are
complex organisms with a myriad of interacting com-
ponents and optimizations. Jepsen assumes that our
tests exercise only a fraction of PostgreSQL’s possible
behaviors.

As always, we note that Jepsen takes an experimental
approach to safety verification: we can prove the pres-
ence of bugs, but not their absence. While we try hard
to find problems, we cannot prove the correctness of
any distributed system.

4.1 Recommendations

Users should be aware that PostgreSQL’s “repeat-
able read” is in fact snapshot isolation—a fact long-
understood in the PostgreSQL community and previ-
ously reported by Kleppmann. Since G2-item is prohib-
ited under common formalizations of repeatable read,
users may have designed applications assuming this
held true for PostgreSQL. In this case, users may wish
to run selected transactions under serializable isola-
tion instead, add explicit locking, or redesign those
transactions such that they are no longer sensitive to
G2-item.

We recommend that the PostgreSQL team update
their concurrency control documentation to resolve
the ambiguity around “repeatable read”. The cur-
rent documentation does not mention the term “snap-
shot isolation”—stating that PostgreSQL’s “repeatable
read” actually means snapshot isolation would imme-
diately clarify matters. The documentation could also
provide clearer guidance to users by replacing the
ambiguous “serialization anomaly” with G-single, G2-
item, and G2; SI prohibits G-single but allows G2-item
and G2.

As for whether snapshot isolation is stronger than re-
peatable read, one possible solution would be to adopt
Berenson et al.’s definitions, and state that snapshot

isolation is incomparable with repeatable read: SI
allows some anomalies which are prohibited under
RR (e.g. write skew), but RR allows other anomalies
(e.g. phantoms) which are prohibited under SI. Doing
so would bring PostgreSQL in line with a twenty-five
year thread of scholarship on transactional isolation by
Berenson, Adya, Bailis, et al.

However, as Ports & Grittner note in their paper
on PostgreSQL’s serializable snapshot isolation, the
ANSI specification is ambiguous, and the G2-item
anomalies we observed do not necessarily violate the
strict interpretation of the phenomena prohibited by
repeatable read. In this case, we suggest that Post-
greSQL explicitly state their choice of the strict, rather
than broad, interpretation.

It appears that no version of PostgreSQL has ever guar-
anteed serializability. Users should be aware that con-
current update and insert transactions may exhibit G2-
item. High-contention workloads are especially suscep-
tible. The PostgreSQL team has written tests to repro-
duce the problem and is evaluating a patch; we recom-
mend upgrading once the next minor release becomes
available.

One final note: our testing suggests that PostgreSQL
provides (or, in the case of serializability, will provide
once the G2-item bug is resolved) more than snapshot
isolation and serializability. Our histories appeared
consistent with strong snapshot isolation and strict se-
rializability, both of which ensure compatibility with
a real-time order, in addition to preventing the usual
dependency-graph anomalies. We are unsure if this
is intentional, or whether it holds in all cases, but if
so, PostgreSQL should feel free to claim these stronger
consistency models!

4.2 Future Work

PostgreSQL’s contributors are evaluating a patch to re-
solve the serializability violation we discovered, and
writing clarifying documentation for snapshot isola-
tion versus repeatable read.

Elle’s list-append workload is limited to reads and ap-
pends over datatypes which are isomorphic to lists.
We have no way to test deletions, replacements, or
other list operations: there could be latent issues in
those codepaths. We have other workloads available
for registers and sets, albeit supporting weaker infer-
ences. Both could be implemented on PostgreSQL,
which could help cover additional ground.

It seems unlikely that we can efficiently check, or
even model, all functionality provided by modern SQL

5

https://github.com/jepsen-io/elle
https://github.com/ept/hermitage
https://www.postgresql.org/docs/12/transaction-iso.html
https://www.postgresql.org/docs/12/transaction-iso.html
https://www.microsoft.com/en-us/research/wp-content/uploads/2016/02/tr-95-51.pdf
http://pmg.csail.mit.edu/papers/icde00.pdf
https://www.vldb.org/pvldb/vol7/p181-bailis.pdf
https://drkp.net/papers/ssi-vldb12.pdf
https://drkp.net/papers/ssi-vldb12.pdf


databases. Aggregations, subqueries, and stored pro-
cedures are in common use, and none are verifiable by
our current approach. In particular, predicates are a
key part of the SQL standard and have been encoded in
Adya’s formalism—the representation of transactions
which underpins Elle. We have thus far punted on
how to represent, generate, and verify the correctness
of transactions involving predicates. This means that
Elle can only identify G2-item, not G2 in generality.
We therefore cannot distinguish between repeatable
read and serializable. This seems the most promising
avenue for future research.

This work was performed independently, without com-
pensation, and conducted in accordance with the Jepsen
ethics policy. This work would not have been possi-
ble without the kind assistance of PostgreSQL contribu-
tors Andres Freund, Peter Geoghegan, Félix Gerzaguet,
Thomas Munro, and Daniel Verite. Jepsen also wishes
to thank C. Scott Andreas, André Arko, Silvia Botros,
Lita Cho, Peter Geoghegan, Félix Gerzaguet, Alex Ras-
mussen, and James Turnbull for their feedback on early
drafts. Kevin Cox and Frank McSherry offered sugges-
tions on the published report.

6

https://jepsen.io/ethics.html
https://jepsen.io/ethics.html

	Background
	Test Design
	Results
	Repeatable Read
	Serializable

	Discussion
	Recommendations
	Future Work


