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Radix DLT is a distributed, byzantine-fault-tolerant ledger for cryptocurrencies based on delegated proof-of-
stake. We evaluated Radix DLT at version 1.0-beta.35.1, 1.0.0, 1.0.1, and 1.0.2, as well as various development
builds—all versions associated with Radix’s Olympia technology milestone. We found 11 safety errors, ranging
from stale reads which violated per-server monotonicity, to aborted and intermediate reads, as well as the partial
or total loss of committed transactions. At least some of these issues affected users of the Radix Olympia Public
Network. We also observed what appeared to be liveness issues with indeterminate transactions and performance
degradation during single-node faults. RDX Works reports that all safety issues we found had been resolved in
version 1.1.0, in large part by replacing the archive API subsystem with a new Gateway API. RDX Works also
reports that their internal load tests show they have resolved the issue with indeterminate transactions. Jepsen
has not verified these claims. RDX Works has also written a companion blog post to this report. This work was
funded by Radix Tokens (Jersey) Limited, and conducted in collaboration with RDX Works Ltd, in accordance
with the Jepsen ethics policy.

1 Background

Radix DLT (Distributed Ledger Technology) is a dis-
tributed ledger: a serializable log of transactions over
a state machine, along with mechanisms for querying
that state. Throughout this report, “Radix” refers to
the Radix DLT software.

RDX Works, the makers of Radix, intend to develop
and release a smart contract system à la Ethereum—
a feature which is now available as a part of the
Alexandria developer preview. The implementation
discussed in this report, and which is presently de-
ployed as the Radix Olympia Public Network, does not
include smart contracts. Instead, it provides a set of
accounts which can hold and transfer units of virtual
currencies, called tokens. A “native token” called XRD
is used for core Radix operations like paying network
fees. Users can create their own tokens as well.

Radix’s homepage advertises “1000x More Scalabil-
ity than Ethereum / Solana / Polkadot / Avalanche /
…,” which refers to their parallelized Byzantine-fault-
tolerant (BFT) consensus protocol named Cerberus.
Rather than serialize all operations through a single
instance of a consensus system, Cerberus runs sev-
eral independent shards of consensus, each based on
the HotStuff BFT consensus protocol. For cross-shard
operations, Cerberus establishes transient consensus
instances which “braid” those shards together. This
should allow Radix to offer linearly scalable transac-
tion throughput.

FromMay throughNovember 2021, Radix’s homepage
advertised 1.4 million transactions per second using a
2019 sharded consensus prototype.

1.4m TPS on a DLT

Radix’ last consensus algorithm ‘Tempo’
publicly achieved 1.4m TPS in 2018, the
current world record. The new algorithm
‘Cerberus’ is theoretically infinitely scal-
able and builds on many of the insights we
learnt from replaying the entire history of
Bitcoin in less than 30 minutes!

There appears to be some confusion over these proto-
type test results versus the behavior of the Radix DLT
software which currently runs the Radix Olympia Pub-
lic Network. Claims of 1.4 million transactions per sec-
ond and unlimited scalability are frequently repeated
by proponents of Radix on social media. For example,
StrongHandzSP90 writes:

Radix DLT #XRD is an innately sharded
DLT that is NOT a blockchain and has
infinite scalability (1.4million TPS con-
firmed and verifiable), enhanced security
and decentralised all WITHOUT BREAK-
ING COMPOSABILITY. This is the future
of #DeFi!

When asked, RDX Works executives informed Jepsen
that blockchain/DLT readers would normally under-
stand present-tense English statements like these to
be referring to potential future behavior, rather than
the present.

Jepsen is no stranger to ambitious claims, and aims
to understand, analyze, and report on systems as
they presently behave—in the context of their docu-
mentation, marketing, and community understand-
ing. Jepsen encourages vendors and community mem-
bers alike to take care with this sort of linguistic am-
biguity.
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Indeed, as the Radix Roadmap clarifies, the Cerberus
sharded consensus system is not yet implemented.
Instead Radix currently processes all transactions
through a single consensus instance, also based on
HotStuff. This means the Olympia Public Network
has constant, rather than linear scalability. The
roadmap indicates that Olympia offers 50 transac-
tions per second, and while Radix presently declines
to publish network throughput statistics, an indepen-
dent dashboard indicates the Olympia Public Radix
network is currently processing three to five trans-
actions per second. In our testing with five to ten-
node clusters of m5.large instances, we saw transac-
tions start timing out with as little as one request per
second, and goodput generally peaked at ~16 transac-
tions per second.1

During our analysis, Radix’s documentation ex-
plained that Radix nodes can run in three principal
ways:

An individual Radix Node has its own ac-
count on the Radix network. It can be con-
figured in three different ways depending
on its purpose:

A Full Node simply connects to the net-
work, synchronizes ledger state, and ob-
serves the status of the network. It can
be thought of as a kind of “wallet” that is
connected directly to the network, with the
Node’s own account available for program-
matic control.

A Validator Node starts life as a Full Node,
but has also “registered” itself to the net-
work as a Validator by submitting a special
transaction from its account. Registration
means that it may now accept XRD token
“stake” and potentially be included in the
validator set of 100 nodes that conduct net-
work consensus.

An Archive Node not only synchronizes
ledger state (as with a Full Node) but
also heavily indexes that state to support
the JSON-RPC API endpoint the Archive
Node offers. The Node API is useful
for client applications, like wallets or ex-
change integrations, as well as general
account/transaction queries and program-
matic control of accounts.

Both full and validator nodes can also be archive
nodes. Archive nodes are simply those which have set
api.archive.enable = true.

Validators do the work of consensus. Accounts on a
Radix network can stake a portion of their XRD to
one or more validators, indicating they believe those
validators to be trustworthy network participants. In

the Radix Olympia Public Network, the 100 validators
with the highest stake are selected to execute the con-
sensus protocol. Every epoch (a period determined by
the number of consensus rounds) a fresh set of valida-
tors is selected. The Radix protocol is intended to guar-
antee the safety of the ledger state and the liveness of
the network at large, under the condition that no more
than 1/3 of active stake supports nodes which are ei-
ther unresponsive or malicious.

Radix transactions (in the Olympia series of releases)
are an ordered series of operations performed by a sin-
gle account. The most common operations come in
three basic flavors:

1. Transferring tokens to another account.
2. Staking XRD to a validator.
3. Unstaking XRD from a validator.

Transactions can not perform read operations. How-
ever, clients can observe the state of the Radix ledger
by querying a node’s archive API, which provides
methods for fetching the status of a transaction, the
balance of a single account, and the complete history
of transactions on a single account. The archive API
is essentially a read-only layer around Radix’s ledger,
and during our testing was the primary way for users
to observe Radix state.2

1.1 Safety and Liveness

This report discusses safety and liveness properties.
As Lamport’s 1977 Proving the Correctness of Multi-
process Programs succinctly put it:

A safety property is one which states that
something [bad] will not happen.

A liveness property is one which states that
something [good] must happen.

These senses have been standard in concurrent and
distributed systems verification for several decades;
their definitions are widely understood throughout
the field. We use these senses throughout Jepsen re-
ports.

Four days prior to publication, RDX Works informed
Jepsen that the blockchain/DLT community had de-
veloped idiosyncratic definitions of safety and liveness.
Their definitions are:

A safety violation is defined as two healthy
consensus nodes disagreeing onwhat is the
correct ledger state. Most notably, this is a
result of a double-spend having been per-
mitted. Specifically in the Radix Olympia
Network, this means a single substate be-
ing successfully “downed” more than once
in the ledger.

1Our tests used the standard Radix JSON-RPC API to construct and submit transactions, and used an exponential distribution of
requests across a rotating pool of accounts to achieve a variety of high- and low-contention scenarios. Radix’s test figures bypassed
large parts of the API, and used the Bitcoin ledger as their source of transactions. It seems reasonable to imagine that Bitcoin’s
history contains no concurrent conflicting transactions, since these conflicts would have been resolved via consensus at the time
of submission. These factors could help account for our observed performance disparities.

2RDX Works is replacing the Archive API with a completely new service for interacting with Radix’s internal state: the Network
Gateway. Its first release was January 19th, 2022, after the completion of this work.
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A liveness break is defined as the network
halting and being unable to process further
transactions.

These definitions are of course specific examples of
safety and liveness properties, but they allow many
behaviors which would reasonably be termed safety or
liveness issues. For example, a system which acknowl-
edges user transactions and then throws them away
on every node trivially satisfies this safety property,
but one would be hard-pressed to call such a system
safe.
To Jepsen’s surprise, RDX Works asserted that phe-
nomena such as aborted read, intermediate read, and
lost writes do not constitute safety violations (in the
DLT sense). RDX Works claims that to describe these
errors as safety violations would not be understood by
readers from a DLT background; this report is there-
fore “factually incorrect”. On these grounds, RDX
Works requested that Jepsen delete anymention of our
findings from the abstract of this report.
Jepsen respectfully declines to do so.

1.2 Consistency

As of November 5, 2021, Radix’s documentation of-
fered essentially no description of Radix’s consistency
guarantees or behavior during faults. However, in
our initial conversations RDX Works staff indicated
that transactions should be strict serializable. This
means that transactions appear to execute in a total
order, such that each transaction takes effect at some
point in time between that transaction’s submission
and confirmation.
On the other hand, RDXWorks indicated that read op-
erations are not intended to be strict serializable. In-
stead they read from a snapshot of committed state on
the local node. This means that histories of transac-
tions and reads should still be serializable, but reads
may observe stale state.
Moreover, each archive node is supposed to enforce a
sort of local sequential consistency: reads against a
single node should observe monotonically increasing
states, and successive transactions and reads to the
same node should be executed in order. When a node
says that a transaction is confirmed, any future read
on that same node is guaranteed to reflect that trans-
action.

2 Test Design

We designed a test suite for Radix DLT using the
Jepsen testing library. Our test suite created local
clusters of Radix DLT nodes, completely independent
from public Radix networks, and could also (with lim-
itations) interact with Stokenet: a public test net-
work. Our tests ran on 5–10 node clusters of Debian
Buster machines, in both LXC and on EC2 virtual ma-
chines. Our LXC tests ran on a single 48-way Xeon

with 128 GB of RAM. In EC2, we used m5.large in-
stances backed by EBS for each node. Every node in
our local clusters was configured as a validator node
with the archive API enabled.

We tested Radix version 1.0-beta.35.1, and moved on
to versions 1.0.0, 1.0.1, 1.0.2, and a series of devel-
opment builds from June 15th through November 5th,
2021. This series of production releases were associ-
ated with Radix’s Olympia technology milestone: the
first iteration of the Radix Public Network.

Our tests submitted transactions and read the state
of accounts using the Radix Java client library, which
talks to Radix’s archive API via JSON-RPC. We be-
gan with version 1.0-beta.35-SNAPSHOT and pro-
ceeded through several development builds as the API
evolved.

Our principal workload submitted randomly gener-
ated transactions which transferred XRD from a sin-
gle account to 1-4 others. Accounts were selected from
an exponential distribution, and generally limited to
64 transactions per account to limit the quadratic
cost of reading and verifying long transaction logs.
Meanwhile, we issued single-account balance and
transaction-log reads across that same pool of ac-
counts.

Radix transactions frequently timed out, remaining
in state PENDING after 10 seconds of polling. Because
indeterminate transactions reduce the accuracy and
increase the cost of our analyses, we attempted to re-
solve these whenever possible. We maintained a cyclic
buffer of all pending transactions, and periodically
checked transactions from that buffer to see if they’d
resolved to a CONFIRMED or FAILED state.

2.1 Transaction Ordering

Instead of designing a new dedicated safety checker for
Radix’s data model, we translated Radix transactions,
balance reads, and transaction-log reads into histories
Jepsen can already check: transactions made up of
reads and appends to lists, where each list is identi-
fied by a unique key. To do this, we interpret Radix ac-
counts as lists of transaction IDs, which are uniquely
generated by Jepsen and stored in each transaction’s
message field.

We rewrite each Radix transaction 𝑇𝑖 to an abstract
list-append transaction comprising a series of opera-
tions which appended 𝑇𝑖 to every account 𝑇𝑖 touches.
We rewrite each read of an account’s transaction log
to a transaction which performed a single read of that
account ID, returning the list of transaction IDs ex-
tracted from the message field of each transaction in
the log. Finally, we take the longest transaction log for
each account and play forward its sequence of transac-
tions to derive a sequence of balances the account took
on during the test. This allows us tomapmost (though
not necessarily all) balance reads to a “virtual” read of
some prefix of the transaction log.
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Txn-log for account x:

Txn 1: transfer 50 from account x to account y

Txn 3: transfer 30 from account y to account x

Txn 4: transfer 10 from account z to account x

Balance of account x: 80 

Txn 1: transfer 50 from account x to account y

Txn 3: transfer 30 from account y to account x

Txn 4: transfer 10 from account z to account x

Radix Operations Inferred Balances 

Account x

Initial balance: 100

After txn 1: 50

After txn 3: 80

After txn 4: 90

Txn-log for account x:

Txn 1: transfer 50 from account x to account y

[read x [1 3 4]]

[read x [1 3]]

[append x 1] [append y 1]

[append y 3] [append x 3]

[append z 4] [append x 4]

[read x [1]]

List-Append History

For example, in this diagram we take a Radix his-
tory involving three transactions numbered 1, 3, and
4. Transaction 1 transfers 50 XRD from account 𝑥 to
account 𝑦, transaction 3 transfers 30 XRD from 𝑦 to 𝑥,
and transaction 4 transfers 10 XRD from 𝑧 to 𝑥. An
early read of 𝑥’s transaction log shows transaction 1,
and a second read shows transactions 1, 3, and 4. Fi-
nally, a read of 𝑥’s balance shows 80 XRD.
Transfers and transaction-log reads are directly trans-
lated to list-append transactions. Transaction 1 is
rewritten as a list-append transaction which appends
1 (the transaction ID) to keys 𝑥 and 𝑦 (the two accounts
involved). The transaction-log read of transactions 1,
3, and 4 becomes a list-append read of key 𝑥, returning
the list [1 3 4].
To analyze balance reads of account 𝑥, we take the
longest transaction log for 𝑥 and simulate the effects of
applying each of those transactions to 𝑥 in turn. Know-
ing the initial balance of 𝑥 is 100 XRD, we obtain suc-
cessive balances of 50, 80, and 90 XRD by applying
transactions 1, 3, and 4.
We then examine the balance read of 𝑥 = 80 XRD.
Since 80 appears only once in the computed series of
balances, we know that this balance read should have
observed the state of 𝑥 resulting from applying trans-
action 1, then 3. We translate this transaction to a
list-append read of 𝑥 returning [1 3].
There were some additional subtleties here. Each
transaction costs a fee which is destroyed as a part
of execution—we recorded fees as a part of transac-
tion submission and took them into account when com-
puting balances. Because Radix histories with reads
are only serializable rather than strict serializable,
we could fail to observe some transactions which ac-
tually executed. Furthermore, not all balances may
have been uniquely resolvable to specific transactions.
However, these ambiguities did not prevent our infer-
ence from being sound—they only reduced complete-
ness. In general, only a handful of unobserved or am-
biguous transactions occur during a test.
With transactions encoded as appends and reads of
lists, we use Elle to check that the resulting history

is serializable. We additionally construct a graph of
real-time dependency edges between non-concurrent
transactions: if 𝑇1 is confirmed before 𝑇2 is submitted,
𝑇1 must precede 𝑇2 in the serialization order. We also
compute dependencies between all non-concurrent op-
erations on a single node: this allows us to check
(for example) that two reads against node n1 observe
logically increasing states of the system. Elle then
merges these dependency graphs together, along with
inferred read-write, write-write, and write-read de-
pendencies derived from transaction structure, and
looks for cycles in the resulting graph. Each cycle cor-
responds to a consistency anomaly.

2.2 Additional Checks

Projecting transactions into list-append operations al-
lows us to check for aborted reads, transaction order-
ing, etc. However, this projection focuses primarily on
ordering, and mostly ignores the semantic meaning of
transfers and account balances. We therefore comple-
ment our list-append checker with additional safety
checks. For instance, we verify that transactions are
faithfully represented in transaction logs: they have
the same number of operations as the transactions
which were submitted, they interact with the same ac-
counts, transfer the same amounts, and so on. We com-
pute the set of all possible balances for each account
over time, and make sure that balance reads always
observe some plausible amount. We check to make
sure that account balances (both via balance reads and
those implied by transaction logs) never become nega-
tive.

2.3 Raw Reads

To distinguish between issues in the underlying trans-
action log versus those in the per-account indices de-
rived from that log, RDX Works team members added
an API for querying the raw transaction log directly.
Our tests integrated that API and verified that the
raw transaction log was consistent with submitted
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transactions, exhibited a total order, etc. We also pro-
jected the raw transaction log into per-account logs,
and used that information as a part of our transaction
ordering inference.

We added similar support for a testing-only API which
exposed the raw balances of accounts.

2.4 Faults

Throughout our tests we injected a variety of faults
into our clusters, including process crashes, process
pauses, network partitions, clock errors, and member-
ship changes.

Membership changes were particularly tricky: the
membership state machine is complex, highly asyn-
chronous, and easy to get into “stuck” states where
no transactions can proceed. For example, our origi-
nal tactic for removing nodes simply killed the node
and deleted its data files, as might happen if a valida-
tor node caught on fire and backups of its keys were
not available, or the organization running it closed
down shop unexpectedly. In Radix, validators are gen-
erally expected to politely remove themselves, then
remain on the network until the end of the current
epoch, or ensure that fewer than 1/3 of current valida-
tors (by stake) have also removed themselves: the con-
current loss of 1/3 of validators by stake causes Radix
to halt. Although we attempted to preserve a 2/3 su-
permajority of active stake through each membership
transition, our test harness struggled with liveness
breaks when nodes were removed impolitely. To ad-
dress this, we introduced newmembership transitions
for registering and unregistering validators, and had
our nodes politely unregister themselves before shut-
ting down.

In the Radix Olympia Public Network, three factors
help ensure liveness. First, RDX Works encourages
users to stake their XRD on validators with a small
stake, to prevent a few nodes from holding 1/3 of all
stake. Second, validators which do not participate in
rounds do not receive XRD rewards, which provides
incentive for stakers to redistribute their stake away
from failed validators. Third, if a network suffers the
loss of more than 1/3rd of validators by stake, it can be
restarted through amanual process involving political
coordination.

2.5 Stokenet

Due to differences in network size, latency, and work-
load, we suspected that issues identified in local test
networks might not manifest in large-scale deploy-
ments of Radix. To that end, we adapted our test
workload to run on the “Stokenet” public test network.
While transaction fees limited the amount of testing

we could perform, we were able to use this mechanism
to reproduce key results, such as lost updates.

2.6 Mainnet

We also designed a passive checker which performed
read-only queries against the Radix Olympia Public
Network in order to look for traces of consistency
anomalies. Our public-network checker started with
a single validator account address, and used trans-
action log queries to traverse approximately six thou-
sand reachable addresses and fifty thousand transac-
tions.

We compared those transaction logs to search for cases
where a transaction between accounts 𝑎 and 𝑏 was
present in 𝑎’s log, but not in 𝑏’s log: a lost update. We
also checked the status of each transaction to identify
those which were in state FAILED, but which nonethe-
less appeared in transaction logs: aborted reads.

3 Results

3.1 Indeterminate Transactions During Normal
Operation (#1)

As of summer 2021, RDXWorks was aiming for a max-
imum transaction confirmation time of roughly five
seconds, assuming the network was not overloaded.
Transactions in our low-latency, five-to-ten node clus-
ters generally took 100–1,000 ms to execute. However,
even under healthy conditions a significant number of
transactions took hundreds of seconds to definitively
commit or fail. Consider this timeseries plot of trans-
action latencies during one 11-hour test run:

Even at only ~3 transactions per second, a significant
number of transactions (the orange streak) timed out
after 10 seconds. A few of those could eventually be re-
solved to a successful or failed state (see points above
10 seconds), but the time it took to resolve them in-
creased exponentially over time.3 Eventually timed-
out transactions failed to resolve altogether—perhaps
by falling out of cache.

High latencies are frustrating for users, but in theory
tolerable so long as transactions eventually resolve to

3Our workload maintained a circular buffer of unresolved transactions and checked transactions from that buffer incrementally
throughout the test. We expect observed latencies to rise linearly with the size of the buffer—and since a good fraction of trans-
actions never resolve, the buffer size should increase semi-linearly over the course of the test. This likely accounts for some of the
observed increase in failed latencies above 10,000 ms, but does not explain the exponential curve. Perhaps other factors are at
play.
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a definitive state: e.g. CONFIRMED or FAILED. However,
at roughly five transactions per second, approximately
5–10% of submitted transactions never resolved.
This poses a hazard for Radix users: when one sub-
mits a transaction, there is a good chance that one sim-
ply will never knowwhether it took place or not. Users
cannot assume it committed without running the risk
that it actually failed (and presumably, their payment
never going through). They also cannot assume the
transaction failed and resubmit their transfer request:
if the transaction did commit, they could pay twice
as much as intended. Clients could theoretically save
the computed raw transaction to resubmit it on the
user’s behalf: using the same UTXO states should pre-
vent double-spending. However, this assumes that the
client is smart enough to save those raw transaction
states, detect user retries, reliably differentiate them
from intentional submission of duplicate transactions,
and resubmit the saved transaction when desired.
After our work together, RDX Works replaced the
archive API with a new Core API and Network Gate-
way. RDX Works asserts that this issue is resolved as
of version 1.1.0. Since this system was developed after
our testing, Jepsen has not evaluated it.

3.2 High Latencies During Single Faults (#2)

Another potentially surprising finding: when even a
single node is unavailable due to a crash, pause, or
network partition, median transaction latencies on
the remaining nodes remain dramatically elevated for
the duration of the fault. In our tests, a single fault
in a five-node cluster with the default tuning options
caused transaction latencies to rise by roughly 1.5 or-
ders of magnitude.

The above plot shows the latency distribution of trans-
actions over time from a test where we submitted
roughly five transactions per second, while periodi-
cally isolating a single node via a network partition.
Partitions are represented by shaded tan bars from 2
to 117 seconds, from 485 to 2,135 seconds, and 2,957
to 3,612 seconds. During each of these intervals, me-
dian transaction latency jumped from ~90 ms to 5–10
seconds. A good number of operations timed out after
10 seconds: Radix does this normally, but more opera-
tions time out during faults.
RDX Works believes this behavior is a consequence
of Radix’s consensus design. Consensus proceeds in
rounds, and each round is coordinated by a single val-
idator: the leader. Validators take turns being the
leader, proportional to their stake. When a validator

is down, the consensus rounds which that validator
should have led will fail, blocking transactions from
committing until the next round led by a healthy val-
idator begins. There is presently no mechanism for
detecting faulty nodes and skipping them: every time
a faulty node takes a turn as the leader, the network
must wait for that node to time out before proceeding
to the next round.

One might expect that with five evenly-staked val-
idators a single-node fault would cause only ~20% of
transactions to experience high latencies. Instead, it
appeared that a single-node fault affected almost ev-
ery transaction. This could be because healthy leaders
complete their rounds in a handful of milliseconds, but
a faulty leader blocks consensus for several seconds
before the cluster moves on to the next leader. If re-
quests arrive uniformly over time, almost all requests
will arrive during the faulty leader’s round, and must
wait for that round to complete before a healthy leader
can process them. A single faulty node can therefore
affect almost all requests!

We suspect that two factors mitigate this issue in the
Radix Olympia Public Network today. First, a large
pool of validators (e.g. 100 rather than 5) increases
the number of rounds led by healthy nodes. Second,
higher inter-node latencies increase the time it takes
for each healthy round of consensus, which means
a smaller fraction of requests arrive during the un-
healthy round. By contrast, our test environment fea-
tured low latencies and a small pool of validators, both
of which amplify the effects of single-node faults.

RDXWorks also has ideas for improving latency in the
future. The present leader timeout is set to a rela-
tively conservative three seconds. In our tests, low-
ering this timeout to 300 milliseconds cuts the up-
per bound on transaction latency from 10 seconds to
roughly 1 second. RDX Works may be able to reduce
this time-out through an update to the Radix Olympia
consensus protocol, to reduce the duration of consen-
sus rounds led by an unavailable validator. RDX
Works also reports unfinished designs for mechanisms
to reduce the number of proposals a seemingly faulty
leader is called upon to make by allowing a validator
which is timing out to be gradually reduced to zero par-
ticipation, regardless of stake. Validators could fully
rejoin consensus once in good health.

3.3 Non-Monotonic Reads (#3)

Under normal operation, the transaction history of an
account can fail to include committed transactions—
even when those transactions are already known to
be committed by that node! For instance, consider this
test run in which Jepsen process #9, talking to node
n5, submitted and confirmed transaction 4 (t4), which
transferred 99 XRD from account 4 to account 3.

{:process 9
:type :invoke
:f :txn
:value {:id 4

:from 4
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:ops [[:transfer 4 3 99]]}
:time 424827567
:index 15}

{:process 9
:type :ok
:f :txn
:value {:id 4

:from 4
:ops [[:transfer 4 3 99]]}

:time 542953296
:index 23

0.032 seconds after that transaction was known to be
committed on n5, process 9 initiated a read of account
4’s transaction history. That read returned two trans-
actions:

{:f :txn-log
:value {:account 3}
:time 575230138
:process 9
:type :invoke
:index 27}

{:f :txn-log
:value {:account 3

:txns
[{:fee 0N

:message nil
:actions [...]}

{:fee 100000000000000000N
:message "t1"
:actions
[{:type :transfer

:to "brx...wq5"
:rri "xrd_rb1qya85pwq"
:validator nil
:from "brx...ahh"
:amount 68N}]}]}

:time 592084345
:process 9
:type :ok
:index 30}

The first transaction affecting account 3 was an ini-
tial setup transaction and not a part of our test work-
load. The second transaction was a Jepsen-initiated
transfer transaction labelled t1. So node n5 knew
that t4 was committed, and that t4 affected account
3, but also failed to show t4 in account 3’s history!
This is a stale read—not only from the perspective of
the cluster as a whole, but also as viewed by n5 alone.
We call this a non-monotonic read because successive
reads performed against a single node may appear to
go “backwards in time”: observing then un-observing
the effects of a transaction.4

Our Elle-based checker renders this anomaly as a cy-
cle involving three operations. The top operation is the
read of account 3 observing only t1. The middle opera-
tion was t3, which transferred funds from account 3 to
account 1. Like t4, it must have logically occurred af-
ter the top read, because the top read did not observe
t3: we render this as a read-write dependency labeled

rw. The bottom operation is t4, which transferred
funds from account 4 to account 3. We know that t4 ex-
ecuted after t3 thanks to a later read not shown here:
since t4 overwrote t3, there is a write-write (ww) de-
pendency between them. Finally, since the top and
bottom transactions took place on the same node in
strict order, there is a per-process edge (p) between
them.

r 3 [1]

a 3 3 a 1 3

rw

a 4 4 a 3 4

ww

p

In our testing of 1.0-beta.35.1, 1.0.0, 1.0.1, and 1.0.2,
non-monotonic reads occurred frequently in healthy
clusters, but were generally no more than a quarter-
second out of date.

As of version 655dad3, balance and transaction-log
reads on single nodes appeared (mostly) monotonic in
our tests. In version 1.1.0, RDXWorks asserts that the
new Network Gateway in 1.1.0 does not exhibit this be-
havior.

3.4 Missing & Extra Actions in Transaction Logs
(#4)

Radix’s archive transaction logsmay not faithfully rep-
resent the transactions which are submitted. As of
1.0.0 (but not in 1.0-beta.35.1) the transaction log al-
ways eliminates transfers from an account to itself.
Moreover, Radix archive nodes would occasionally in-
sert actions into transactions with type UNKNOWN and
no values for the from, to, validator, rri, or amount
field. For example, consider this transaction as it was
submitted to Radix:

{:message "t53265"
:actions [{:type :transfer

:from 2902
:to 2901
:amount 300000000000000000N
:rri "xrd_dr1qyrs8qwl"}

{:type :transfer
:from 2902

4Technically this example is a violation of read-your-writes, if one interprets the transaction as a write, rather than a read. Even
more technically it is a violation of monotonic read, since the “transaction” operation actually had two parts: submitting the
transaction, then reading to see if it was confirmed.
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:to 2901
:amount 8400000000000000000N
:rri "xrd_dr1qyrs8qwl"}]}

… versus that same transaction’s representation in
the archive transaction log:

{:fee 177200000000000000
:message "t53265"
:actions [{:amount 300000000000000000

:validator nil
:type :transfer
:rri "xrd_dr1qyrs8qwl"
:from 2902
:to 2901}

{:amount 8400000000000000000
:validator nil
:type :transfer
:rri "xrd_dr1qyrs8qwl"
:from 2902
:to 2901}

{:amount nil
:validator nil
:type :unknown
:rri nil
:from nil
:to nil}]}

Transaction 53265 somehow gained an extra unknown
action. This behavior occurred in healthy clusters run-
ning version 1.0.0, but was (initially) relatively infre-
quent. In recent development builds, we observed
these anomalies in up to ~50% of submitted transac-
tions.

Both the omission of self-transfers and the insertion
of spurious unknown actions seem like relatively mi-
nor problems: self-transfers don’t (by definition) affect
the overall balance of an account, and the unknown ac-
tions don’t either. However, this could be surprising
for Radix users who expected to see the transactions
they originally submitted.

The omission of self-transfers is a consequence of
how Radix’s archive subsystem interpreted unspent
transaction outputs: the encoding of self-transfers
in Radix’s ledger makes them indistinguishable from
“getting change back” from another transfer. Radix is
unsure why the archive API inserts spurious unknown
actions into transaction logs.

These questions are largely moot: RDX Works has
removed the archive subsystem altogether in version
1.1.0. The Network Gateway now infers the structure
of actions in transaction logs from Radix’s ledger.

3.5 Premature Commits in Development Builds
(#5)

The unreleased development build 48461c4 dramati-
cally improved Radix latencies—but also exhibited a
new class of anomaly: the write order of transactions

could be contrary to the real-time order in which they
were submitted. These issues manifested within min-
utes in healthy clusters, and were exemplified by cy-
cles like the following:

a :log 5582

a :log 5581

wwrt

Here transaction 5581 was confirmed 9 milliseconds
before transaction 5582 was even submitted: we have
a real-time (rt) edge from 5581 to 5582. However,
later reads of the raw transaction log returned val-
ues like (... 5577 5579 5582 5581), which tells us
that 5582 committed before 5581: a write-write (ww)
dependency. Transactions in Radix were supposed
to be strict serializable, which means they should ap-
pear to take effect in an order consistent with the real-
time order in which they were submitted. However,
transaction 5582 took effect before 5581, even though
5581 was (apparently) committed before 5582 even be-
gan!

We also frequently observed cases in version 48461c4
where two transactions which conflicted with one an-
other would both appear to commit. This allowed a
form of double-spend attack: Alexis could pay Bren-
dan $1,000 for a laptop using Radix, and both Alexis
and Brendan would see that payment transaction as
committed in Radix.5 Brendan would then ship Alexis
the laptop. Contemporaneously, Alexis could stash
their entire (pre-payment) account balance in another
account they controlled. If the stash transaction com-
mitted, Alexis would retain all their money and get a
free laptop.

We wrote a test workload to perform this attack and
found that frequently, both spend and stash transac-
tions would be successfully confirmed—even though at
most one could have possibly succeeded. Spend and
stash transactions could be conducted concurrently, or
the stash could be executed strictly after the payment
was confirmed, or vice-versa. All approaches allowed
double-spend, but the most successful approach was
to submit the stash transaction first—doing so allowed
roughly 8% of payments to appear to succeed, but for
Alexis to actually keep their money.

Both of these problems stemmed from a bug in the
transaction status service which returned CONFIRMED
for pending transactions, not just confirmed transac-
tions. This allowed transactions to be reported as
confirmed before their actual commit time (causing
G0-real-time) and for transactions to be reported as

5RDX Works clarified that while this phenomenon involves a user spending the same coins in two different transactions, and both
transactions appearing to succeed, it does not satisfy their definition of a double-spend. RDX Works would prefer to discuss
double-spend only in the context of internal ledger state, rather than the consensus system made up of Radix nodes and clients
together.
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confirmed when they would later go on to fail. That
bug was patched in 350ac77, which appears to have
resolved the issue and returned commit latencies to
their previous range. Version 48461c4 never made
it into a release, and users should not have been af-
fected.

3.6 Committed Transactions Could Have Status
FAILED (#6)

Under normal operation without faults, transactions
with status FAILED could actually be committed. In
this test run with no faults, a cluster of transactions
were reported as FAILED but were actually visible in
the transaction log. Here is transaction 10750, which
had status FAILED…

{:time 927331078170
:process 886
:type :fail
:f :txn
:value {:id 10750

:from 570
:ops [...]
:txn-id "c33...6d9"
:fee 162600000000000000N}

:index 54689}

… but also appeared in subsequent reads of the trans-
action log!

{:time 928355977217
:process 12
:type :ok
:f :txn-log
:value
{:account 570
:txns
[...
{:fee 162600000000000000N
:message "t10750"
:actions [...]}]}

:index 54743}}

This applied both to the archive API and the raw trans-
action logs. Version 1.0.0 was affected; 1.0.1 and 1.0.2
were likely susceptible as well. Since failed transac-
tions were visible to reads, this anomaly is akin to phe-
nomenon G1a: aborted read.

This issue was reproducible in our test clusters with
as few as 1.5 transactions per second. It also occurred
in the Radix Olympia Public Network. For example,
transaction 50c46b1, submitted on October 1 2021, ap-
peared in the transaction logs for both involved ac-
counts. However, its transaction state on October 1
(read after observing that transaction in account logs)
was FAILED. Two days later, on October 3rd, its state
flipped to CONFIRMED.

On October 4th we ran our public-network checker
again and found four apparently-failed-but-actually-
committed transactions (6ebb247, 8d05488, ab8a78a,
and 5428543) submitted in a ten-minute window; all

had status FAILED roughly an hour after submission,
but flipped to CONFIRMED shortly thereafter. A fifth
committed transaction (e563bad) persisted in state
FAILED for several hours.

RDXWorks suspects this issue occurred when a trans-
action committed normally but had been gossipped to
other nodes’ mempools; if those nodes then gossiped
the transaction back to the original node, that node
would recognize that the transaction had already com-
mitted and reject the gossip message. Concluding the
transaction was rejected, Radix would then overwrite
the transaction’s status to flag it as FAILED. When the
transaction later fell out of cache, subsequent reads
would query the log directly, and observe its state as
CONFIRMED.

This issue was initially resolved in 48461c4. RDX
Works asserts it does not appear in version 1.1.0’s Net-
work Gateway service either.

3.7 Missing Transactions (#7)

Under normal operation, committed transactions may
fail to appear in transaction logs. A validator will
insist that the transaction is confirmed, and the bal-
ances of involved accounts will change, but some (but
not necessarily all!) of those accounts’ transaction logs
will never contain the transaction. For example, con-
sider this test run, in which transaction-log reads of
account 4 all began with the following:6

{:account 4
:txns
[...
{:message "t0"
:actions
[{:type :transfer

:from 1, :to 4, :amount 46N}]}
{:message "t8"
:actions
[{:type :transfer

:from 1, :to 4, :amount 36N}]}
{:message "t10"
:actions
[{:type :transfer

:from 4, :to 1, :amount 1N}
{:type :transfer
:from 4, :to 5, :amount 28N}]}

{:message "t12"
:actions
[{:type :transfer

:from 4, :to 4, :amount 85N}
{:type :transfer
:from 4, :to 4, :amount 7N}]}

{:message "t14"
:actions
[{:type :transfer

:from 5, :to 4, :amount 43N}]}
...]}

Meanwhile, transaction logs of account 5 all began
with:

6We omit the initial setup transaction, fees, validators, and RRIs (token names) in the interest of brevity.
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{:account 5
:txns
[{:message "t4"

:actions
[{:type :transfer

:from 3, :to 5, :amount 28N}]}
{:message "t7"
:actions
[{:type :transfer

:from 2, :to 5, :amount 81N}
{:type :transfer
:from 2, :to 5, :amount 94N}]}

{:message "t9"
:actions
[{:type :transfer

:from 5, :to 4, :amount 42N}]}
{:message "t10"
:actions
[{:type :transfer

:from 4, :to 1, :amount 1N}
{:type :transfer
:from 4, :to 5, :amount 28N}]}

{:message "t14"
:actions
[{:type :transfer

:from 5, :to 4, :amount 43N}]}]}

The problem here is not immediately apparent—but
on closer inspection transaction 9 (t9), which trans-
ferred 42 XRD from account 5 to 4, was present in ac-
count 5’s log but missing from account 4. Account 4
skips directly from t8 to t10!
If we take these transaction logs at face value, then
we must conclude that on account 4 t9 must have exe-
cuted after t14. It certainly can’t have executed before,
or it would have appeared in the log. On account 5, t9
executes directly before t10. In list-append terms, we
have the following cycle:

a 1 10 a 4 10 a 5 10

a 4 14 a 5 14

ww

a 4 9 a 5 9

ww

ww

From account 5 we know t9 (bottom) executed on ac-
count 5 before t10 (top), and it was followed by t14
(middle). However, on account 4, t14 must have ex-
ecuted before t9: a cycle. Since all of the edges in
this cycle are write-write dependencies, this anomaly
is called G0, or write cycle, and it implies this history

violates read-uncommitted. It is also therefore not se-
rializable.
In this particular example t9 appeared to have com-
mitted. The transaction status API claimed that t9
committed, and account 4’s balance increased by 42
XRD during t9’s window of execution. It could be that
this issue is limited only to transaction-log reads, and
the internal transactions themselves are still strict se-
rializable.
However, even a read-only omission of a transaction
has serious consequences. The balance of a Radix ac-
count, as visible to users, might not be the sum of its
recorded transactions: it is possible to gain or lose
tokens and not be able to explain why. Two account
histories can disagree on whether a transaction took
place. From an accounting perspective, this is a vi-
olation of double-ledger bookkeeping principles. Bal-
ances can also (at least according to the transaction
log) become negative—withdrawing more money from
an account than the account ever contained.
This problem occurred in healthy clusters running ver-
sion 1.0-beta.35.1, 1.0.0, 1.0.1, 1.0.2, and numerous de-
velopment builds. It affected all nodes equally—when
a transaction disappeared, clients could not recover it
by reading from another node. It occurred even at low
throughputs: at just 0.125 transactions per second,
we were able to observe dozens of “confirmed” trans-
actions which failed to appear in some or all transac-
tion logs. We were also able to reproduce this issue in
Stokenet, Radix’s public test network: even at rates as
low as 1 transaction per second, 5–10% of transactions
vanished from some (but not necessarily all!) account
transaction logs.
At least one transaction has already gone missing
from account histories in the Radix Olympia Public
Network. For instance, transaction 63b8485… trans-
ferred 0.9 XRD from rdx…q96rxfx to rdx…ctcgge2.
As of October 1, 2021, that transaction appeared in
suq96rxfx’s transaction log, but did not appear in
ctcgge2’s log.
These issues were addressed by replacing the trans-
action log archive system in version 655dad3. RDX
Works asserts this issue does not appear in the Net-
work Gateway, as of version 1.1.0.

3.8 Contradictory Logs (#8)

Transaction log anomalies were not limited to simple
omissions. Two reads of an account’s transaction log
executed against a single node could contradict one an-
other. For example, take this test run where process
39, making a series of transaction-log requests to node
n5, observed the following logs for account 27:
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Process Time (s) Transaction IDs
39 289.03 ()
39 292.85 ()
39 293.82 ()
39 296.54 (5310)
39 297.29 (5310)
39 297.51 (5310)
39 297.63 (5310)
39 298.55 (5310)
39 298.83 (5310)
39 299.15 (5310)
39 300.41 (5310)
39 300.62 (5310, 5336)
39 301.64 (5310, 5334)
39 302.69 (5310, 5334)
39 305.30 (5310, 5334)
39 307.58 (5310, 5334, 5345)
39 307.97 (5310, 5334, 5345)

Transaction 5336 was briefly visible in the transaction
log, then replaced by transaction 5334. This should
be impossible: if transactions are only appended to
the log for a given account, they should never disap-
pear; nor should two views of the transaction log dis-
agree about the transaction at a particular index. This
is worse than simply omitting a transaction from the
log!
These errors occurred in 1.0-beta.35.1 and 1.0.0, in
healthy clusters under normal operation. They likely
affected 1.0.1 and 1.0.2 as well. However, they ap-
peared infrequently: roughly one in 20,000 transac-
tion log requests. They also seemed to be transient—a
transaction would appear for a single read, then im-
mediately disappear and never be seen again. They
appeared not only in the archive API’s view of a single
account’s transactions, but also in the raw transaction
log.
We don’t know what caused this issue, but it was no
longer reproducible as of version 655dad3. It’s possi-
ble that raising the BerkeleyDB safety level (which
also allowed transaction loss) resolved this problem
in raw logs, and replacing the archive subsystem
for transaction logs addressed its occurrence in per-
account logs.
After our work together, RDX Works completely re-
placed the archive node system with their new Core
API/Network Gateway architecture. Transaction logs
no longer exist in 1.1.0; RDXWorks believes this issue
no longer applies.

3.9 Split-Brain Transaction Loss (#9)

In version 1.0.0, process crashes could lead some (but
not all!) nodes to lose a committed transaction from
the history for an account. Queries for transaction
history on that node would omit that transaction, but
queries against other nodes would reflect it. This
state would persist indefinitely. For example consider
this test run, in which reads of account 16, performed
on various nodes, observed the following transaction
logs:

Node Time Transaction IDs
n1 72 (264)
n3 74 (264)
…
n4 96 (264)
n5 98 (264, 267)
…
n5 127 (264, 267, 474)
n4 127 (264, 267, 474)
n5 128 (264, 267, 474)
n2 134 (264, 267, 474)
n1 134 (264)
n1 138 (264, 474)
n4 138 (264, 267, 474)
n1 139 (264, 474)
n5 141 (264, 267, 474)
…
n4 333 (264, 267, 474, 812, 831, 1022, 1075)
n1 335 (264, 474, 812, 831, 1022, 1075)
n5 339 (264, 267, 474, 812, 831, 1022, 1075)
n3 340 (264, 267, 474, 812, 831, 1022, 1075)
…
n1 592 (264, 474, 812, 831, 1022, 1075, …)

Transaction 267 was submitted at 64 seconds, con-
firmed as committed by 98.95 seconds, and visible in
transaction histories on nodes n2, n3, n4, and n5 be-
ginning at 98 seconds. However, node n1 (which was
killed 114 seconds into the test) never observed trans-
action 267—despite recording additional transactions
over the next several hundred seconds.
We never identified the cause of this issue. It was
initially resolved in version 655dad3 by completely
rewriting the archive transaction log subsystem. RDX
Works asserts that this issue is also resolved in the
new Core API/Gateway design.

3.10 Raw Log Write Loss On Crash (#10)

During process crashes, Radix 1.0.0’s raw transaction
log could lose committed transactions—even those
which were universally agreed upon. For example
take this test, where transaction 4643 committed be-
tween 354 and 359 seconds into the test. At 362 sec-
onds, Jepsen killed every node in the cluster. Reads
of the raw transaction log returned the following lists
of transactions:

Node Time Transaction IDs
n3 359 (3766, 3767, 4643)
n4 359 (3766, 3767, 4643)
n2 359 (3766, 3767, 4643, 4640, 4647)
n2 359 (3766, 3767, 4643, 4640, 4647)
n1 359 (3766, 3767, 4643, 4640, 4647)
n5 359 (3766, 3767, 4643, 4640, 4647)
n3 359 (3766, 3767, 4643, 4640, 4647, 4648)
n2 360 (3766, 3767, 4643, 4640, 4647, 4648)
n2 360 (3766, 3767, 4643, 4640, 4647, 4648)
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n5 369 (3766, 3767)
… … …
n5 375 (3766, 3767, 4894, 4904, 4905)

Despite transaction t4643 being visible on every node,
t4643 (along with t4640, t4647, and t4648) was lost af-
ter Jepsen killed the entire cluster. t4643 never reap-
peared, and Radix continued as if it had never hap-
pened.

This problem occurred only in cases where every node
was killed at roughly the same time. This suggested
a problem with disk persistence: perhaps validators
did not actually write transactions to disk before con-
sidering them acknowledged. Indeed, RDXWorks had
chosen COMMIT_NO_SYNC when configuring the ledger’s
underlying BerkeleyDB storage system. Changing the
durability level to COMMIT_SYNC appears to have ad-
dressed the issue. This fix was first available in ver-
sion 1.1.0.

3.11 Intermediate Balance Reads (#11)

Under normal operation, Radix regularly returned
balances for accounts which did not correspond to any
point in the transaction log—or indeed, to any combi-
nation of possible transactions. For example, consider
account 52 from this test run, whose first two transac-
tions were:7

{:fee 1,
:actions ({:amount 75, :type :transfer,

:from 51, :to 52}
{:amount 29, :type :transfer,
:from 51, :to 50}

{:amount 67, :type :transfer,
:from 51, :to 52}),

:id 717,
:balance 0,
:balance' 142}

{:fee 1,
:actions ({:amount 26, :type :transfer,

:from 51, :to 51}
{:amount 66, :type :transfer,
:from 51, :to 52}

{:amount 69, :type :transfer,
:from 51, :to 52}

{:amount 48, :type :transfer,
:from 51, :to 51}),

:id 720,
:balance 142,
:balance' 277}

No other transactions were concurrent during this
time, so the only possible values account 52 could have
taken on were 0 (the initial state), 142 (after transac-
tion 717), and 277 (after transaction 720). Yet after
transaction 720, a read of account 52 observed a bal-
ance of 208!

A close look at t720 reveals the problem. It began with
an inferred balance of 142: the result of applying t717.
It then transferred 66 XRD from account 51 to account

52, which would have resulted in a balance of 208—
before moving on to transfer another 69 XRD to 52, re-
sulting in a final balance of 277. It appears that this
balance read observed a value from partway through
t720: an intermediate read. This implies Radix was
not actually read committed.
This behavior occurred regularly in healthy clusters.
At just ten transactions per second, roughly one in
three hundred reads observed an intermediate state.
They were present in 1.0-beta.35.1 as well as 1.0.0.
RDX Works initially fixed this issue in fb1bc43 by
rewriting the account info storage service. RDXWorks
asserts that this issue is also resolved in the new Core
API/Gateway design.

3.12 More Committed Transactions With Status
FAILED (#12)

Version 655dad3 addressed many of the most frequent
problems with transaction logs. However it still exhib-
ited aborted reads in which transactions could (very
rarely) have status FAILED but appear in transaction
logs. For instance, consider this test run, in which
transaction 4743 was submitted to node n3 at 296.27
seconds, checked on n5 at 330.65 seconds, and found to
be FAILED. However, every subsequent read of account
28 included transaction 4743, beginning at 331.53 sec-
onds.
This problem appeared to bemuch rarer than previous
aborted reads: we observed it only four times in ~20
hours of testing. Thus far it has appeared only in tests
which included network partitions, or with combined
process crashes and membership changes.
RDX Works did not report a cause for this issue. How-
ever, they assert the new Core API/Network Gateway
architecture in version 1.1.0 resolves it.

3.13 More Non-Monotonic Reads (#13)

In tests of version 655dad3 with membership changes
and process crashes, a pair of reads performed sequen-
tially against a single recently-joined Radix node could
observe a later state before an earlier state. For in-
stance, this test run contained the following cycle:

7To make this easier to read, all amounts are divided by 1017.
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The bottom-most transaction in this cycle was a bal-
ance read of account 1, which observed a balance that
could only have resulted from applying transactions
0, 3, and 52. At the top of the cycle, two subsequent
transactions performed on the same node observed no
balance at all for account 92, and an empty transac-
tion log for account 14. However, that empty state of
account 14 must have preceded transaction 52 on ac-
count 1, through a chain of read-write (rw) and write-
write (ww) dependencies. This implies that the state
of this single node “went backwards” relative to the
transaction-log order.
RDX Works did not report a cause for this issue. How-
ever, they assert that it does not appear in their new
Core API/Network Gateway architecture, in version
1.1.0.
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№ Summary Event Required Reported Fixed
1 Indeterminate transactions during normal operation None 1.1.0
2 High latencies during single faults Single crash, partition, etc. Unresolved
3 Non-monotonic reads None 1.1.0
4 Missing & extra actions in transaction logs None 1.1.0
5 Premature commits in development builds None 350ac77
6 Committed transactions have status FAILED None 1.1.0
7 Missing transactions in transaction logs None 1.1.0
8 Contradictory transaction logs None 1.1.0
9 Split-brain transaction loss Single-node crash 1.1.0
10 Loss of committed transactions from raw log All nodes crash 1.1.0
11 Intermediate balance reads None 1.1.0
12 More committed transactions with status FAILED Network partitions 1.1.0
13 More non-monotonic reads Membership changes and crashes 1.1.0

4 Discussion

RDXWorks intended to offer a distributed ledger with
strict-serializable transactions and per-node mono-
tonicity. However, under normal operation, our Radix
test clusters exhibited stale reads of balances and
transaction logs, intermediate reads of balances, tran-
sient and long-lasting loss of transactions from ac-
count histories, and aborted reads where failed trans-
actions could actually commit. We observed transac-
tion loss and aborted reads in the Radix Olympia Pub-
lic Network. Transaction logs failed to faithfully repre-
sent submitted transactions by omitting some actions
and spuriously inserting UNKNOWN actions. Nodes could
lose transactions and enter permanent split-brain in
response to process crashes.

Many of these issues stemmed from the archive API’s
index structures, which failed to properly track the
underlying ledger. However, Radix could also lose
transactions from the raw ledger itself when all nodes
crashed concurrently, due to an inappropriate choice
of COMMIT_NO_SYNC as the safety level for the underly-
ing BerkeleyDB storage system.8

In addition, we found significant liveness and perfor-
mance issues. Transaction throughput peaked at ~16
transactions per second in five- to ten-node clusters
with near-zero latency. A significant fraction of trans-
actions in our testing took tens or even hundreds of sec-
onds to resolve to CONFIRMED or FAILED; far more never
resolved at all. Single-node faults caused significantly
elevated latencies for almost all transactions, though
this behavior may be specific to our low-latency, 5–10-
node test clusters.

In response to these issues, RDX Works opted to re-
place their archive node system with a different archi-
tecture. The updated architecture involves a split be-
tween a low-level event stream exposed by one or more
Radix nodes (the Core API), and a new network ser-
vice which consumes and aggregates Core API infor-
mation, and exposes it to clients via HTTP (the Gate-
way API).

The Core API was released in Radix 1.1.0, on Jan-
uary 17th, 2022. The Gateway API was released with
Network Gateway 1.0.0 on January 20th, 2022. A
Radix Wallet which integrated the Gateway API was
released at version 1.3.0 on January 27th, 2022, and
an updated version of the Radix Explorer web site was
released on the same date.

RDX Works asserts that as of January 27th, 2022, all
identified safety issues have been fixed, liveness is-
sues with individual transactions have been fixed, and
one issue relating to performance in networks with
non-participating validators remains. They also re-
port that with multiple test passes running hundreds
of thousands of transactions across multiple test net-
works, RDX Works is no longer able to reproduce the
resolved issues. Jepsen congratulates RDX Works on
these advances.

Jepsen has verified none of RDX Works’s claims since
the end of our testing on November 5th, 2021.

4.1 Ordering

By design, Radix does not offer strict serializability:
reads of the transaction log or balances do not go
through consensus, but instead return whatever state
the local node happens to have. This state could be
arbitrarily stale. If a client issued queries to multiple
nodes it could observe a transaction commit, then fail
to see that transaction’s effects; under normal opera-
tion we routinely observed stale reads. Since this is
not documented, we believe it is worth stating explic-
itly. Users should be aware that reads from archive
nodes may not reflect the most recent state of Radix.
Confirmed transactions may not be visible depending
onwhich validator one is talking to. RDXWorks states
that they do not believe this behavior is acceptable.

RDX Works reports the new Gateway API includes a
ledger state object with all read responses. This ledger
state includes the epoch, round number, and state ver-
sion which the request observed. Clients can employ

8We report this fault as requiring all nodes to crash, but suspect it might actually be something like “more than 2/3 of validators
by stake”, since not all validators need participate in a consensus decision.
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these numbers as a causality token to obtain mono-
tonic views of the ledger, even across gateways and val-
idators. This is not sufficient to prevent stale reads in
general, but Jepsen (from a cursory discussion of the
feature) suspects it might be sufficient for sequential
consistency—and, by extension, read your writes.

4.2 Performance

As of July 2021, the Radix Olympia Public Mainnet
targeted ~50 transactions per second on a globally dis-
tributed network of 100 validator nodes, with trans-
actions confirmed on ledger generally within five sec-
onds, so long as the network is not overloaded. In
our testing with five to ten validators, transaction
throughput rarely exceeded 16 transactions per sec-
ond. Even request rates as low as 1 transaction per
second resulted in strongly bimodal latencies: most
transactions confirming or failing within ~100–1000
ms, and ~5–10% taking tens or even hundreds of sec-
onds to resolve—or never resolving at all. We routinely
observed transactions get “stuck” in a pending state
for at least 11 hours.9

As of February 2nd, 2022, RDX Works assserts that
the issue with some transactions taking abnormally
long to process has been resolved (when the network
is operating within capacity). Jepsen has not veri-
fied this assertion. Whenever possible, clients should
cache the finalized transaction just prior to submis-
sion and save it for resubmission in the event that it
does not resolve—as well as providing explicit work-
flows for retries. The alternative is to risk transac-
tions never going through, or to potentially pay twice
(or three times!) the required amount.

RDX Works states that they consistently observe sus-
tained throughput of 40–50 transactions per second
in globally distributed Olympia test networks, and be-
lieve that our lower observed throughput is a conse-
quence of our testing methodology rather than the net-
work being incapable of processing a greater through-
put. In particular, RDX Works points to the fact that
our test harness used Radix’s Java client and HTTP
APIs to construct and submit transactions from out-
side the network, and that these transactions might
have higher contention.

RDX Works also reports they have conducted sus-
tained stress tests using their new Core API/Network
Gateway architecture, which replaced the archive API
used in this test. With independent worker processes
submitting transactions “far beyond network through-
put capacity,” RDXWorks observed a maximum trans-
action latency—a far outlier—of 81 seconds.

Most classic fault-tolerant consensus systems can han-
dle the failure of a minority of nodes without signifi-
cant impact on latencies. Radix behaved differently:
in our tests, a single node failure increased latencies
for almost every transaction from ~100 ms up to 5–
10 seconds. The fraction of affected requests and the
magnitude of the latency increase likely depend on

the number of validators and the inter-node latency.
The Radix Olympia Public Network has 100 rather
than 10 validators, which increases the probability
that a single node is down at any time, but also in-
creases the number of healthy consensus rounds that
can occur during a single-node fault. The public net-
work’s higher inter-node latencies might also mask
the impact of faults by slowing down healthy consen-
sus rounds relative to the faulty validator timeout.
Users may need to plan for latency spikes, but without
long-runningmeasurements of Radix public networks,
we can’t say for sure.

Jepsen typically tests systems capable of hundreds
to tens of thousands of operations per second, with
nominal latencies on the order of 1–100 millisec-
onds. Higher throughput and lower latencies gen-
erally make it possible to find more bugs: we have
more chances for race conditions to occur, and finer-
grained temporal resolution to identify timing anoma-
lies. Radix’s low throughput and high latency may
have masked safety violations. In particular, our tests
required several hours to reproduce e.g. aborted read
(#13). Improving Radix performance may make it pos-
sible to identify and fix bugs faster.

4.3 Public Impact

We began testing Radix 1.0-beta.35.1 on June 15th,
2021. Jepsen reported significant safety issues to
the RDX Works team, including missing transactions
in transaction logs by June 28th, intermediate bal-
ance reads by July 6th, and contradictory transaction
logs by July 9th. Aware that these issues occurred
in healthy clusters, RDX Works chose to launch their
public “Olympia” mainnet running version 1.0.0 on
July 28th.

Since 1.0.0, 1.0.1, and 1.0.2 did not address any of the
issues we identified, Radix users who made requests
from July 28th, 2021 to January 27th, 2022 may have
observed non-monotonic states on single nodes, inter-
mediate balances, aborted reads, missing and spuri-
ous actions in transactions, inconsistency between ac-
count logs, transient or permanent loss of commit-
ted transactions, and long-lasting split-brain in which
transaction logs disagree about the order of transac-
tions. Transaction logs could appear to sum to neg-
ative balances. Transaction logs could disagree on
whether a transaction happened or not. Clients could
execute a transaction, see its state as CONFIRMED, ob-
serve it in account logs, then have it vanish later.

These issues were not merely theoretical: we were
able to reproduce the omission of committed transac-
tions from transaction logs on Stokenet, a Radix pub-
lic test network, within seconds. Even at less than 1
transaction/sec and with no concurrency, roughly 5–
10% of our transactions went missing from transac-
tion logs. We also passively observed both transaction

9Again, we note that Jepsen primarily evaluates distributed systems safety: our workloads are designed to create high contention
on at least some accounts. This pattern may not hold true in Radix’s various public networks.
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loss and aborted reads in the Radix Olympia Public
Network.10

RDX Works reports that during the course of our test-
ing, RDXWorks undertook their own concerted testing
efforts to attempt to reproduce the identified safety is-
sues using the Radix Wallet, and were unable to do so.
They were able to reproduce them when submitting
transactions programmatically, at “the fastest possi-
ble speed”.

RDX Works’s position is that adversarial actions are
extraordinarily common on public ledgers, both in
the forms of technical and social engineering attacks.
Given their inability to reproduce issues from within
the Radix Wallet, they determined that the risk of
harm to the end user was greater if any disclosure was
made ahead of a fix being successfully implemented,
tested, and deployed.

Bitfinex, the first exchange to integrate with the Radix
Olympia Public Network, and the sole known candi-
date for expected high-rate usage, enabled the pur-
chase and sale of XRD on August 23rd, 2021. RDX
Works reports that Bitfinex was made aware of the
aborted read issue prior to launch, and adjusted their
use profile to avoid it.

Jepsen asked whether these issues might have af-
fected transactions processed through the Instabridge
Ethereum-Radix bridge. RDXWorks relays thatMeta-
verse Ltd examined Instabridge system records to
search for cases where a submitted transaction ap-
peared to fail but was later recorded as successful. No
such cases were found. Instabridge does not automati-
cally retry in the case of failure, so RDXWorks believes
there is no chance of such an event being “hidden” by
a successful retry.

RDX Works asserts that the Network Gateway (which
is now in use by the Radix Wallet and Explorer) pro-
vides an accurate view to clients of network state, in-
cluding accurate transaction histories for all accounts
which may have had incorrect information reported by
the preceding archive node system.

Our collaboration concluded on November 5th, 2021.
RDX Works declined to inform the public of these oc-
currences until the release of this report on February
5th, 2022.

4.4 Future Work

The RDX Works team plans to continue work to-
wards their language for smart contracts (Scrypto)
and sharded consensus implementation (Cerberus).
Future testing could investigate Scrypto semantics
and verify that Cerberus provides the same ordering
guarantees as the current (non-sharded) HotStuff con-
sensus system.

Our testing with membership changes was limited in
scope: while our fault injection system added, regis-
tered, staked, unregistered, and removed nodes, the

asynchronous nature of Radix’s cluster view, the com-
plexity of the membership state machine and the lack
of guardrails within Radix to prevent (e.g.) unregister-
ing every validator from the system meant that tests
with membership changes tended to render the clus-
ter unusable after a few dozen transitions—despite
attempting to preserve a 2/3 majority of stake. While
sufficient for basic testing, further work could improve
the robustness of the membership fault scheduler.

The performance issues we identified in local testing
suggest the need for ongoing monitoring of Radix Pub-
lic Network latencies and transaction outcomes. In
particular, it would be helpful to know how the fail-
ure of a single production Radix validator impacts
user-facing latencies, the distribution of finality times,
and what fraction of submitted transactions can be ex-
pected to get stuck in an indeterminate state indefi-
nitely.

As typical for Jepsen reports, our work here focused
on accidental faults: partitions, crashes, pauses, etc.
Jepsen has not evaluated the robustness of Radix
against malicious attackers. Future work might in-
clude writing intentionally malicious versions of the
Radix validator and verifying that safety properties
hold regardless.

4.5 Toward a Culture of Safety

These findings suggest important questions for the
cryptocurrency, blockchain, and distributed ledger
(DLT) community. What are distributed ledgers sup-
posed to do in terms of safety properties? What do they
actually do? Where should we measure them? And
what do users expect, anyway? These questions (and
Jepsen’s suggestions) are hardly novel, but we present
them in the hopes that they might prove a helpful
jumping-off point for DLT engineers, marketers, and
community members.

First, Jepsen believes distributed ledgers—like all
distributed systems—might benefit from publishing
more formal descriptions of their consistency seman-
tics. For ledgers powered by consensus a range of pow-
erful consistency models are possible. A DLT could
opt for strict serializability, which ensures a global
real-time order of all operations. Or serializability,
which ensures only a total order regardless of real-
time. There are concrete benefits to each: strict serial-
izability ensures that users must immediately observe
any confirmed transaction, whereas serializability al-
lows much faster (but stale!) reads. Session-related
models might also be applicable: strong session serial-
izable would ensure each client observes a monotoni-
cally increasing state and never fails to observe their
own prior transactions.

DLTs often reify a separation between write and read
paths. In some systems, writes (DLT transactions) go
through consensus and mutate the ledger, whereas
reads are serviced by any node’s local state and may

10Our ability to infer safety violations in the public network was limited by the fact that we had no visibility into what other Radix
clients saw or what transactions were actually submitted to the network—we can’t tell whether the other anomalies we observed
in our local test clusters also occurred in the public network.
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therefore observe any point in time. Reads might be
made stronger through the use of a logical clock, al-
lowing clients to enforce per-session or causal orders.
Some reads could even be strict serializable: waiting
on the underlying consensus system’s incidental trans-
action flow to ensure recency. As in Zookeeper, Or-
dered Sequential Consistency might allow DLTs to de-
scribe the consistency semantics of interacting writes
and reads.

When a DLT clearly defines its intended safety prop-
erties, we can investigate whether it satisfies those
claims. A broad spectrum of software assurance tech-
niques are available: from proofs to model check-
ing to types to unit tests to end-to-end integration
tests—like Jepsen. These techniques build confidence
in different ways: a model checker for any nontriv-
ial distributed system is rarely exhaustive, and an
end-to-end test like Jepsen is even less likely to ex-
plore unusual corners of the state space. A solid
proof, on the other hand, provides strong confidence
in correctness—but it may not map perfectly to an im-
plementation’s behavior. For this we need tests.

Like any database, DLTs stand to benefit not only from
example-based tests, but also by writing property-
based tests which generate randomized inputs to ex-
plore paths hand-written testsmight not have thought
to travel. As distributed systems DLTs may find par-
ticular value in simulation or scheduler interposition
techniques which explore novel orderings of events,
and from fault injection, which deliberately causes net-
work, node, and other failures to drive the system into
atypical regimes. Since large-scale distributed sys-
tems experience faults frequently, this type of testing
is an important part of creating safety.

As RDX Works aptly observes, DLTs are complex,
multi-layered systems. In Radix, for example, a core
consensus protocol running the ledger state machine
was coupled to an ancillary index (the archive subsys-
tem), which in turn provided an HTTP API for clients.
Those clients, in turn, connected the ledger to other
software systems and human beings.

Although a DLT specialist might not phrase it this
way, each layer of this architecture is in fact a consen-
sus system. The core ledger is often built explicitly
as a consensus system: one where validators serve as
proposers, acceptors, and learners. But by coming to
eventual, nontrivial, single-valued agreement on the
outcome of transactions, the archive API (in conjunc-
tion with the validators) is also a consensus system:
the archive’s internal data structures serve as addi-
tional learners. So too is the composition of clients,
the archive, and validators: clients serve as both pro-
posers and learners. In this consensus system clients
ought to agree on whether or not transactions hap-
pened, what those transactions did, and what their
order was. At the end of the day, human beings (and
external software systems) want to use the ledger to
help them agree.

When defining and measuring safety we should con-
sider each of these layers. A core ledger system which
violates consensus is, of course, likely to break consen-
sus for clients as well. What is not so obvious is that a

ledger can be perfectly correct and yet fail to provide
consensus for clients—if, for example, its behavior is
masked by a faulty intermediary. This is precisely
the situation we observed throughout this report, and
hints at why the scope of safety properties matters.

Jepsen typically explores the behavior of software de-
ployed in a local testing cluster, rather than a public
network. Following our discovery of anomalies in lo-
cal clusters we designed a checker which passively ex-
plored the Radix Olympia Public Network by making
HTTP read requests to public archive nodes. We be-
gan with a single account (taken from a public valida-
tor page) and traversed as many accounts and trans-
action logs as we could find from there, checking to
make sure that transaction states and logs all lined
up with one another. Since reads are free and open to
everyone, this analysis was easy to perform—and it ob-
served two bugs! Jepsen wonders whether other DLT
teams or third-party evaluators might design their
own crawlers to passively verify safety properties in
public networks.

No non-trivial software is perfectly correct. There
will always be bugs, and sometimes design shortcom-
ings which impact safety. DLTs sit at the intersection
of distributed systems, concurrency control, consen-
sus, caching, and security. Systems which implement
smart contracts must also tackle language, VM, and
compiler design. These are challenging problems: it
would be surprising if any system did not exhibit at
least some safety violations.

This raises the question: to what extent do DLT
users—from high-frequency automated exchanges to
individuals—expect safety? Are they accustomed to
aborted reads and forgiving of lost transactions? Or do
they expect strict serializability at all times? If safety
violations occur, what frequency are users willing to
accept? These questions depend on workload through-
put, latency, and concurrency demands, and are mod-
ulated by the probability and severity of anomalies.
Still, it would be helpful to have some idea of what
these expectations are for various use cases, so we can
find out if systems live up to them.

On the other hand, users attempting to select a DLT
for writing applications or for use as a financial net-
work are confronted with a dizzying array of potential
options. What safety guarantees does each ledger of-
fer? Since vendors and users frequently have a finan-
cial or affiliative stake in these networks, there exist
significant incentives to paint an optimistic picture of
the technology. Marketing claims leverage ambiguity.
Future plans are conflated with present behavior. Sys-
tems which have not undergone rigorous testing may
operate under the presumption of safety. Moreover,
even people with the best intentions may struggle to
communicate safety invariants clearly. They’re just
plain tough to reason about—for end users, marketers,
and engineers alike. All of this makes evaluating tech-
nologies more difficult.

If this sounds familiar, you’re not alone. Roughly
twelve years ago the rise of NoSQL accompanied an
explosion of interest in distributed databases, queues,
and other systems. Homegrown consensus algorithms
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which lost data during network partitions flourished,
marketing claims soared to fantastic heights, and sys-
tems cut corners on safety to achieve better bench-
mark results. More than one system claimed to beat
the CAP theorem, or asserted that network partitions
or power failures fell outside their fault model.
As this cohort of the distributed database industryma-
tured they developed a more nuanced and rigorous en-
gineering culture. Their engineers learned through
experience at scale and from the distributed systems
literature. They expanded their fault models and
adapted more robust algorithms. They more formally
codified their safety guarantees, and began to explore
formal models, simulation, and testing to gain confi-
dence that those guarantees held. Users began to re-
quest stronger safety properties from their systems
and developed a more nuanced view of performance,
availability, and consistency tradeoffs. Marketing
claims—while ever-optimistic—cooled somewhat. The
distributed database community is far from perfect,
but has made significant strides towards building,
discussing, and evaluating safer systems. Jepsen is
proud to have been a small part of that process, and
looks forward to watching the DLT community build
their own culture of safety.

4.6 Final Remarks

This report is provided for informational purposes
only, and does not constitute financial advice. Nei-
ther Jepsen nor the author have any financial position
involving XRD, eXRD, other Radix tokens, or shares
in Radix Tokens (Jersey) Limited, RDX Works, or any
other Radix-related entity.

As always, we note that Jepsen takes an experimental
approach to safety verification: we can prove the pres-
ence of bugs, but not their absence. While we try hard
to find problems, we cannot prove the correctness of
any distributed system.

This work was funded by Radix Tokens (Jersey) Lim-
ited, and conducted in collaboration with RDX Works
Ltd, in accordance with the Jepsen ethics policy.
Jepsen wishes to thank the RDX Works team for their
assistance—especially Russell Harvey, Matthew Hine,
Joshua Primero, Shambu Pujar, Piers Ridyard, and
Sergiy Yevtushenko. We would also like to thank Irene
Kannyo for her editorial support during preparation of
this manuscript.
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