
RavenDB 6.0.2
Kyle Kingsbury
2024-01-31

RavenDB is a document database which claims to offer ACID transactions, including Snapshot Isolation by
default and Serializability with the strongest settings. Following the documentation’s claim that a session “rep-
resents a single business transaction,” we tested RavenDB 6.0.2 and found surprising behavior even in healthy,
single-node clusters. Transactions lose updates by default. Both the optimistic concurrency and cluster-wide
transaction modes allow fractured read: a serious anomaly forbidden by Snapshot Isolation and several weaker
consistency models. Alternatively, RavenDB may not have interactive transactions at all. This work was per-
formed independently without compensation, and conducted in accordance with the Jepsen ethics policy.

1 Background

RavenDB is a distributed document database which
repeatedly advertises its support for ACID transac-
tions.1 It’s intended for OLTP workloads, and offers
a variety of ETL paths for exporting data to other sys-
tems. Its transactional API revolves around a session
handle, which “represents a single business transac-
tion on a particular database.” Users create a session,
perform operations like reads and writes, and finally
call session.saveChanges() to commit their writes as
an atomic unit.

RavenDB can replicate data across a set of nodes
with automated failover. Sharding is either a work in
progress or ready in 6.0, depending on which part of
the documentation you’re reading. RavenDB includes
secondary indices wrapped with a homegrown query
language, multiple revisions of documents, time series
datatypes, and CRDT-based counters. In this text,
we’ll focus on RavenDB’s transactional key-value op-
erations.

1.1 Replication

Per RavenDB’s High Availability page, the database
accepts writes and reads across all nodes in the cluster.
It uses the Raft consensus algorithm, which should
theoretically allow RavenDB to provide consistency
models up to Strong Serializability. However, that
page goes on to say operators can “easily setup a topol-
ogy in which end points operate … independently in
case the network is disrupted.” In a blog post, CEO
Oren Eini repeats this claim:

If a node is located in a place where the
internet connectivity goes down, that node
can continue to operate offline, taking in

data locally. Once the connection is re-
stored, the node will take the data it pro-
cessed and replicate it throughout your
cluster.

This would make ACID transactions impossible. The
“I” in ACID refers to “Isolation”: transactions must ap-
pear to execute independently, without interference
from other transactions. This property is formalized
as Serializability: equivalence to some totally ordered,
non-concurrent execution of transactions. We know
that totally available systems cannot offer Serializabil-
ity or even Snapshot Isolation. RavenDB might offer
Causal or Read Committed, but the stronger consis-
tency models are theoretically off-limits.

A second page on high availability explains that there
are two layers within RavenDB, and that Raft is used
only for cluster metadata:

• First, the cluster layer is managed by
a consensus protocol called Raft. In
CAP theorem it is CP (consistent and
partition tolerant).

• The second layer, the database layer,
is AP (it is always available, even if
there is a partition, and it’s eventually
consistent) and is handled by a gos-
sip protocol between the databases on
different nodes, forming multi-master
mesh and replicating data between
each other.

RavenDB utilizes the different layers for
different purposes. At the cluster layer,
the consensus protocol ensures that oper-
ators have the peace of mind of knowing
that their commands are accepted and fol-
lowed. At the database layer you know that
RavenDB will never lose writes and will al-
ways keep your data safe.

1As discussed in section 4.1, the interpretation of a “transaction” in RavenDB is complicated. In this report, we identify RavenDB’s
session API as an interactive transaction.

1

https://ravendb.net
https://jepsen.io/ethics
https://ravendb.net
https://ravendb.net/why-ravendb
https://ravendb.net/docs/article-page/6.0/csharp/server/ongoing-tasks/etl/basics
https://ravendb.net/docs/article-page/6.0/csharp/client-api/session/what-is-a-session-and-how-does-it-work
https://ravendb.net/why-ravendb/high-availability
https://ravendb.net/why-ravendb/high-availability
https://issues.hibernatingrhinos.com/issue/RavenDB-8115
https://issues.hibernatingrhinos.com/issue/RavenDB-8115
https://ravendb.net/features/clusters/sharding
https://ravendb.net/docs/article-page/6.0/csharp/client-api/session/querying/how-to-query
https://ravendb.net/docs/article-page/6.0/csharp/client-api/session/querying/how-to-query
https://ravendb.net/docs/article-page/6.0/csharp/document-extensions/revisions/overview
https://ravendb.net/docs/article-page/6.0/csharp/document-extensions/timeseries/overview
https://crdt.tech/
https://ravendb.net/why-ravendb/multi-model
https://ravendb.net/why-ravendb/high-availability
https://raft.github.io/
https://jepsen.io/consistency/models/strict-serializable
https://jepsen.io/consistency/models/serializable
https://jepsen.io/consistency
https://jepsen.io/consistency/models/snapshot-isolation
https://jepsen.io/consistency/models/causal
https://jepsen.io/consistency/models/read-committed
https://ravendb.net/features/clusters/high-availability


This is also confusing. AP systems are known for avail-
ability, not safety; lost update is a well-understood
problem in AP registers. RavenDB claims to of-
fer transactions with ACID guarantees. However,
these transactions are apparently routed through an
eventually-consistent, totally available replication sys-
tem. There are databases which couple an (e.g.)
Sequential transaction coordinator to an eventually-
consistent datastore to provide Serializability, but
it’s not clear from this documentation how RavenDB
links cluster and database layers together to ensure
safety.

The Inside RavenDB chapter on cluster design con-
firms that Raft is used only for cluster metadata.
Writes are allowed on every node, and are totally avail-
able:

RavenDB uses multi-master replication in-
side a database, and it’s always able to ac-
cept writes.

In other words, even if the majority of the
cluster is down, as long as a single node
is available, we can still process reads and
writes.

On the other hand, RavenDB’s ACID Transactions in
NoSQL post claims the opposite:

As in the single node version, RavenDB
commits a transaction with just one round
of Raft consensus.

If Raft is involved in the transactions, RavenDB can
offer up to Strong Serializability—but transactions
cannot be totally available. Indeed, RavenDB’s clus-
tering documentation clarifies there are actually two
separate transaction paths. The default mode is
called a single-node transaction, which allows conflicts
“when two clients try to modify the same set of doc-
uments on two different database nodes.” A cluster-
wide transaction uses Raft to prevent conflicts, allow-
ing transactions to “favor consistency over availabil-
ity.” To execute a cluster-wide transaction, one must
set TransactionMode = CLUSTER_WIDE.

What safety properties do these transaction paths
guarantee? For this, we need to consider RavenDB’s
ACID claims in detail.

1.2 ACID

RavenDB’s home page prominently advertises “ACID
database transactions” “across multiple documents
and across your entire cluster.” Its ACID Database
Transactions page explains that a database without
transactions is “not much of a database.” It boasts
that RavenDB “guarantee[s] ACID without sacrificing
performance” and notes that because of its distributed
ACID guarantees, “developers are exempt from han-
dling the numerous scenarios of partial data transfers
and the intricacies of data storage.”

RavenDB’s ACID Transactions in NoSQL article ex-
plains that RavenDB “was capable of multi-document
transactions since version 1.0”:

Because it was optimized with this in mind,
there wasn’t even a need for a non-ACID
option. Any combination of database oper-
ations can be combined into an ACID trans-
action. As a user you never needed to imple-
ment ACID guarantees yourself, and you
were free to design documents around your
own requirements….

RavenDB was designed to make one and
only one round trip to the server per trans-
action. RavenDB’s version of the session ob-
ject tracks a series of commands, collects
them as a batch, and sends them all to
the server in a single round-trip when the
method session.saveChanges() is called.

Again, RavenDB claims to have been “the pioneer
database to offer ACID in a nonrelational context. In
2010, RavenDB offered ACID consistency across mul-
tiple documents.” However, these guarantees held
only on a single node: concurrent clients on different
nodes could violate isolation. RavenDB 4.0, released
in fall 2020, introduced the cluster-wide transaction
path, which took transactions “from being ACID over
multiple documents to being ACID over your entire
cluster.”

The Transaction FAQ says “all actions performed on
documents are fully ACID” but contradicts itself im-
mediately, saying “in a single transaction, all opera-
tions operate under snapshot isolation.” DBDB takes
this to mean that RavenDB offers Snapshot Isolation
by default.2 In a 2020 webinar, CEO Oren Eini con-
firmed this position: “RavenDB uses Snapshot Isola-
tion by default, and transactions are effectively going
to observe Serializable between operations that hap-
pen on the same node.”

There are hints that RavenDB might provide some-
thing much weaker than Snapshot Isolation. Buried
in the Inside RavenDB book, in the chapter on doc-
ument modeling, is a section on concurrency control.
This section explains that RavenDB (at least in ver-
sion 4.0) performed no concurrency control, and in-
stead used Last Write Wins conflict resolution by de-
fault.

What happens if two requests are trying
to modify the same document at the same
time? That depends on what, exactly, you
asked RavenDB to do. If you didn’t do
anything, RavenDB will execute those two
modifications one at a time, and the last
one will win. There’s no way to control
which would be last. Note that both oper-
ations will execute.

2Technically, this isn’t clear from the documentation alone: Snapshot Isolation is a property of histories of transactions, but the
docs discuss behavior only within the scope of a single transaction. RavenDB might have meant some weaker property here—for
instance, Prefix Consistency. However, the CEO’s claims of Snapshot Isolation by default seem authoritative.

2

https://docs.datomic.com/pro/getting-started/brief-overview.html
https://ravendb.net/learn/inside-ravendb-book/reader/4.0/6-ravendb-clusters
https://ravendb.net/articles/acid-transactions-in-nosql-ravendb-vs-mongodb
https://ravendb.net/articles/acid-transactions-in-nosql-ravendb-vs-mongodb
https://ravendb.net/docs/article-page/6.0/Csharp/server/clustering/cluster-transactions
https://ravendb.net/docs/article-page/6.0/Csharp/server/clustering/cluster-transactions
https://ravendb.net/docs/article-page/6.0/java/client-api/session/saving-changes#transaction-mode---cluster-wide
https://ravendb.net/docs/article-page/6.0/java/client-api/session/saving-changes#transaction-mode---cluster-wide
https://ravendb.net/why-ravendb
https://ravendb.net/why-ravendb/acid-transactions
https://ravendb.net/why-ravendb/acid-transactions
https://ravendb.net/articles/acid-transactions-in-nosql-ravendb-vs-mongodb
https://ravendb.net/articles/acid-cluster-distributed-nonrelational-database
https://ravendb.net/docs/article-page/6.0/csharp/client-api/faq/transaction-support
https://dbdb.io/db/ravendb
https://www.youtube.com/watch?v=5ZXBR3croMA&t=39m
https://ravendb.net/learn/inside-ravendb-book/reader/4.0/3-document-modeling#concurrency-control


This is the opposite of ACID isolation. Isolated trans-
actions appear to execute sequentially, not concur-
rently. It also contradicts claims of Snapshot Isolation:
Last Write Wins registers allow all kinds of anomalies
which would be prohibited under Snapshot Isolation,
including lost update. However, this book is two major
releases out of date; it may not apply to 6.0.2.

What about cluster-wide transactions? The Clus-
ter Transactions page seems definitive. “Concurrent
cluster-wide transactions are guaranteed to appear as
if they are run one at a time (serializable isolation
level).”3

From this, Jepsen infers that RavenDB’s default trans-
action settings should ensure Snapshot Isolation by
default and Serializability in a single-node system.
Cluster-wide transactions should ensure Serializabil-
ity globally.

2 Test Design

In 2020 RavenDB wrote their own Jepsen test and
declared in a webinar that per that test, “everything
works.” Their test checked the linearizability of in-
dividual reads and writes against a single document.
It did not evaluate multi-operation or multi-document
transactions.4

We designed a new test harness for RavenDB 6.0.2
running on a single Debian Bookworm node. Our test
used RavenDB’s JVM client library at version 5.0.4.
We did not evaluate multi-node clusters or any kind of
faults.

We wrote a single list-append workload using Elle
to verify transactional isolation. This workload per-
forms transactions over lists, each list identified by
a unique integer ID. Each transaction consists of
reads and/or appends of unique integers to those
lists. Each worker thread in the test opens a single
DocumentStore connected to the same node. Each
transaction creates a new session, performs reads
and/or appends, then calls session.saveChanges()
to commit. Reads are encoded as a single call
to session.load(java.util.Map, id). Appends call
session.load to read the current value, add their
integer element to the end of the list, then call
session.store(map, key).

RavenDB offers a few knobs for tuning transaction
safety: transactionMode and optimisticConcurrency.
We ran our tests using the defaults (single-node trans-
actions, no optimistic concurrency), with single-node
transactions and optimistic concurrency, and finally
with cluster-wide transactions. Cluster-wide trans-
actions cannot be combined with optimistic concur-
rency.

3 Results

We found surprising safety errors in all three transac-
tion modes.

3.1 Lost Update with Single-Node Transactions
(#17927)

By default, RavenDB executes transactions
with transactionMode = SINGLE_NODE and
optimisticConcurrency = false. One might assume
that SINGLE_NODE transactions are safe on single-node
clusters. However, we found the default settings
caused RavenDB to lose updates constantly, even in
single-node clusters without faults.
For instance, in this five-second test run we performed
12,886 transactions over 975 keys. 81 of those keys ex-
hibited a provable lost update. Here are two commit-
ted transactions involving key 830:

[[:r 830 [1 2]]
[:append 824 11]
[:append 807 14]
[:append 830 3]]

[[:r 830 [1 2]]
[:r 831 nil]
[:r 831 nil]
[:append 830 4]]}]}

Both of these transactions read key 830’s value as the
list [1, 2]. Both went on to append a value to key 830:
the first transaction appended 3, and the second trans-
action appended 4. Neither saw the other’s effects. In
a Snapshot Isolated system, the first-committer-wins
rule demands that one of these transactions must
abort. RavenDB, however, allowed both transactions
to commit. This is the definition of a lost update
anomaly.
In an isolated transaction system which only ever ap-
pends elements to lists, every observed version of a sin-
gle list must be a prefix of the longest version of that
list. However, 454 of the keys in this test violated this
prefix property, exhibiting incompatible orders. For
example, here are all the reads of key 116:

3It is tempting to believe that cluster-wide transactions are the ACID transactions RavenDB’s marketing boasts, but this cannot be
the case. RavenDB says it’s offered ACID transactions since 2010, and cluster-wide transactions weren’t introduced until roughly
a decade later. This may reflect confusion over what “ACID” means.

4RavenDB’s Jepsen test may not have measured anything at all: at least in the most recent revision, the generator included no
client operations of any kind.

3

https://dzone.com/articles/conflict-resolution-using-last-write-wins-vs-crdts
https://ravendb.net/docs/article-page/6.0/java/server/clustering/cluster-transactions#concurrent-cluster-wide-and-single-node-transactions
https://ravendb.net/docs/article-page/6.0/java/server/clustering/cluster-transactions#concurrent-cluster-wide-and-single-node-transactions
https://github.com/ml054/jepsen/
https://www.youtube.com/watch?v=5ZXBR3croMA&
https://github.com/ml054/jepsen/blob/08960da98ab9bf7959fce014c63b146b903cbe6c/ravendb/src/jepsen/ravendb.clj#L164-L196
https://github.com/jepsen-io/ravendb/tree/4431310402f334ffdb18a5a7ec819316847b642b
https://github.com/jepsen-io/elle
https://github.com/jepsen-io/ravendb/blob/8315d6053bf022203a24db74812d2fdfe89b56b7/src/jepsen/ravendb/client.clj#L26-L31C15
https://github.com/jepsen-io/ravendb/blob/8315d6053bf022203a24db74812d2fdfe89b56b7/src/jepsen/ravendb/client.clj#L26-L31C15
https://github.com/jepsen-io/ravendb/blob/8315d6053bf022203a24db74812d2fdfe89b56b7/src/jepsen/ravendb/client.clj#L54-L62
https://github.com/jepsen-io/ravendb/blob/8315d6053bf022203a24db74812d2fdfe89b56b7/src/jepsen/ravendb/append.clj#L25-L41
https://github.com/jepsen-io/ravendb/blob/8315d6053bf022203a24db74812d2fdfe89b56b7/src/jepsen/ravendb/append.clj#L25-L41
https://github.com/jepsen-io/ravendb/blob/8315d6053bf022203a24db74812d2fdfe89b56b7/src/jepsen/ravendb/client.clj#L90
https://github.com/jepsen-io/ravendb/blob/8315d6053bf022203a24db74812d2fdfe89b56b7/src/jepsen/ravendb/append.clj#L26-L28
https://github.com/jepsen-io/ravendb/blob/8315d6053bf022203a24db74812d2fdfe89b56b7/src/jepsen/ravendb/append.clj#L40
https://github.com/ravendb/ravendb/files/13794868/20231229T102201.960-0600.zip
https://github.com/ml054/jepsen/blob/08960da98ab9bf7959fce014c63b146b903cbe6c/ravendb/src/jepsen/ravendb.clj#L308-L316


Time (s) Process Value
3.01 1 [1 2]
3.01 1 [1 2]
3.01 0 [1 2]
3.01 1 [1 2 3]
3.01 0 [1 2 4]
3.01 1 [1 2 4 5]
3.01 0 [1 2 4]
3.02 1 [1 2 4 6]
3.02 1 [1 2 4 6]
3.02 1 [1 2 4 6 9]
3.02 1 [1 2 4 6 9 10]
3.02 1 [1 2 4 6 9 10 11 15]
3.02 0 [1 2 4 6 9 10 11 15]

Just over three seconds into the test, process 1 ob-
served key 116’s state as [1 2 3]. However, an imme-
diately following read by process 0 saw [1 2 4], and
the write of 3 never appeared again. Process 1 then
observed [1 2 4 5]. This write of 5 was replaced by 6
and never seen again.

Our lost update checker is conservative: it only in-
fers an anomaly if two transactions read the same ver-
sion of some key and both write to it. However, our
append operations are performed by reading the value,
then writing back changes. This means these transac-
tions contain reads which are effectively invisible to
the checker. It seems likely that these cases of incom-
patible order also represent lost updates.

In total, 481 out of the 975 keys in this test exhibited
lost updates or incompatible orders. These phenom-
ena are prohibited by Serializability, Snapshot Isola-
tion, and Repeatable Read. We’ve reported this as is-
sue 17927 in RavenDB’s issue tracker.

3.2 Fractured Reads with Optimistic
Concurrency (#17929)

With the optimistic concurrency feature enabled,
RavenDB promises to “generate a concurrency excep-
tion (and abort all modifications in the current trans-
action) when the document has been modified on the
server side after the client received and modified it.”
When running on a single node, this setting does ap-
pear to prevent lost updates. However, it allows frac-
tured reads—as well as various flavors of G-Single, G-
nonadjacent, and G2-item. Again, these anomalies oc-
curred in a healthy single-node system.

For instance, consider this ten-second test run in
which every transaction enabled optimistic concur-
rency. Our checker found hundreds of anomalies like
this:

a 271 3 a 279 2

r 271 nil a 276 6 r 279 [2]

:wr:rw

In this diagram the top transaction 𝑇1 appended 3 to
key 271, then appended 2 to key 279. The bottom
transaction 𝑇2 read key 271 and found nothing, ap-
pended 6 to key 276, and finally read key 279’s value as
[2]. Because 𝑇2 failed to observe 𝑇1’s append to key
271, we have a read-write anti-dependency, denoted
rw. Because 𝑇2 observed 𝑇1’s append to key 279, we
have a write-read dependency, denoted wr. In short,
𝑇2 observed some, but not all, of the effects of 𝑇1.
This anomaly is called fractured read, and it is prohib-
ited under Read Atomic, Update Atomic, Causal, Pre-
fix, Parallel Snapshot Isolation, Snapshot Isolation,
Repeatable Read, and Serializable. RavenDB’s Trans-
action FAQ promises Snapshot Isolation: “even if you
access multiple documents, you’ll get all of their state
as it was in the beginning of the request.” In all Snap-
shot Isolated databases Jepsen is familiar with, snap-
shots extend across multiple reads. In RavenDB, it
appears each read can observe a different state. We’ve
reported this as issue #17929 to RavenDB.

3.3 Fractured Read with Cluster-Wide
Transactions (#17928)

Cluster-wide transactions are supposed to be Seri-
alizable. However, we found that even healthy,
single-node clusters in which every transaction used
CLUSTER_WIDE mode routinely exhibited fractured
reads, as well as G-single, G-nonadjacent, G2-item,
and more. Consider this five second test run, which
contained hundreds of serializability violations. Here
is one of those anomalies:

r 149 nil r 146 [1 2 3 6] r 146 [1 2 3 6]

r 142 [2] a 146 6 a 149 1

:rw :wr

Here, the bottom transaction 𝑇2 appended 6 to key
146 and 1 to key 149. The top transaction 𝑇1 failed
to observe 𝑇2’s append to key 149, but did observe its
append to key 146. This is another instance of frac-
tured read. As before, this behavior appears to be pro-
scribed by RavenDB’s documentation, as well as all
consistency models above Read Atomic.
We’ve reported this to RavenDB as issue #17928.

4

https://github.com/ravendb/ravendb/issues/17927
https://github.com/ravendb/ravendb/issues/17927
https://ravendb.net/docs/article-page/6.0/csharp/client-api/session/configuration/how-to-enable-optimistic-concurrency
https://s3.amazonaws.com/jepsen.io/analyses/ravendb-6.0.2/20231229T140050.249-0600.zip
https://ravendb.net/docs/article-page/6.0/csharp/client-api/faq/transaction-support
https://ravendb.net/docs/article-page/6.0/csharp/client-api/faq/transaction-support
https://github.com/ravendb/ravendb/issues/17929
https://ravendb.net/docs/article-page/6.0/csharp/server/clustering/cluster-transactions
https://ravendb.net/docs/article-page/6.0/csharp/server/clustering/cluster-transactions
https://s3.amazonaws.com/jepsen.io/analyses/ravendb-6.0.2/20231229T145350.284-0600.zip
https://github.com/ravendb/ravendb/issues/17928


№ Summary Event Required Fixed in
17927 Lost update with single-node transactions None Unresolved
17929 Fractured read with optimistic concurrency None Unresolved
17928 Fractured read with cluster-wide transactions None Unresolved

4 Discussion

RavenDB variously claims to offer “fully ACID” trans-
actions, Serializability, or at least Snapshot Isolation.
All of these claims appear false. RavenDB 6.0.2’s
default settings allowed lost updates. Even cluster-
wide transactions exhibited fractured reads: a seri-
ous anomaly prohibited under Snapshot Isolation, as
well as several weaker models. These behaviors occur
even in healthy, single-node, single-shard systems, in
which all access occurs via primary key.

RavenDB’s strongest safety settings violate Read
Atomic. It therefore cannot satisfy Update Atomic,
Causal, Prefix, Parallel Snapshot Isolation, Snapshot
Isolation, Repeatable Read, or Serializable. RavenDB
might offer Read Committed or Monotonic Atomic
View, but without more rigorous testing, Jepsen is hes-
itant to make this claim.

RavenDB’s weak default behavior is surprising given
RavenDB’s repeated emphasis on safety. As CEO
Oren Eini remarked on MongoDB’s transaction safety
settings:

[Default] values matter. They matter quite
a lot. Why is that? Because if you choose
the bad values, you’re absolutely going to
get some great numbers in benchmark per-
formance. But then you are going to be
hitting those [safety] issues in production.
And then there is this classic response:
“Oh, you should have read the docs and
used the proper configuration.”

One wonders: if ACID properties are so important
for RavenDB’s users, why do the default settings al-
low lost updates, even on single-key operations? Do
users realize their updates can be silently discarded?
How many are taking care to use cluster-wide trans-
actions where lost updates would violate safety? Do
they know that even cluster-wide transactions allow
fractured read?

This report follows a cursory investigation into
RavenDB’s behavior—it is by no means exhaustive. As
always, we caution that Jepsen takes an experimen-
tal approach to safety verification: we can prove the
presence of bugs, but not their absence. There may be
other anomalies in RavenDB.

4.1 Does RavenDB Even Have Transactions?

The first sentence of RavenDB’s cluster transaction
documentation appears quite clear:

A session represents a single business
transaction.

This is echoed by the first sentence of RavenDB’s ses-
sion documentation:

The Session, which is obtained from the
Document Store, is a Unit of Work that rep-
resents a single business transaction on a
particular database.

… which goes on to say:

The batched operations that are sent in
the SaveChanges() will complete transac-
tionally. In other words, either all changes
are saved as a Single Atomic Transaction
or none of them are. So once SaveChanges
returns successfully, it is guaranteed that
all changes are persisted to the database.

RavenDB sessions are clearly not intended to work
like sessions in typical databases, which are (roughly
speaking) one-to-one with client connections.5 They
come with a default limit of 30 network requests; typ-
ical database sessions are unbounded. They buffer
writes; Jepsen is unaware of any other database whose
sessions do this. They cache reads; most sessions do
not. They include concurrency control mechanisms
like lost update prevention; Jepsen is unaware of any
other database which does this at the session level.
These are all hallmarks of what most databases would
call a transaction.
RavenDB’s article ACID Transactions in NoSQL?
RavenDB vs MongoDB is emphatic: RavenDB has sup-
ported ACID transactions over “any combination of
database operations” for over a decade. It certainly
appears as if RavenDB sessions are intended for this
role!
However, in a response to issue 17927, Eini (a.k.a.
Ayende Rahien) explained that sessions are not in fact
transactions:6

Crucially, RavenDB does not attempt to
provide transactional semantics over the
entire session, rather it provide[s] transac-
tions over individual requests.

And in response to issue #17928, Eini affirms:
5There are scenarios in which a database multiplexes multiple sessions onto a single connection, or migrates a session across

connections. It might be more apt to think of a typical database session as “a logical, single-threaded connection.”
6In the same thread, Eini remarks that “we only consider transactions to be the calls to SaveChanges or other data mutation op-

erations.” This is somewhat alarming: it implies that RavenDB transactions don’t encompass reads at all. On the other hand,
a transaction involving a single HTTP request “applies to reads as well,” so it’s not quite clear what RavenDB’s read safety
semantics are.

5

https://www.youtube.com/watch?v=5ZXBR3croMA&t=850s
https://ravendb.net/docs/article-page/6.0/csharp/client-api/session/cluster-transaction/overview
https://ravendb.net/docs/article-page/6.0/csharp/client-api/session/cluster-transaction/overview
https://ravendb.net/docs/article-page/6.0/csharp/client-api/session/what-is-a-session-and-how-does-it-work
https://ravendb.net/docs/article-page/6.0/csharp/client-api/session/what-is-a-session-and-how-does-it-work
https://www.postgresql.org/docs/current/tutorial-arch.html
https://ravendb.net/docs/article-page/5.4/java/client-api/session/what-is-a-session-and-how-does-it-work#remarks
https://ravendb.net/articles/acid-transactions-in-nosql-ravendb-vs-mongodb
https://ravendb.net/articles/acid-transactions-in-nosql-ravendb-vs-mongodb
https://github.com/ravendb/ravendb/issues/17927#issuecomment-1872912239
https://github.com/ravendb/ravendb/issues/17928#issuecomment-1872916841
https://github.com/ravendb/ravendb/issues/17927#issuecomment-1872912239
https://github.com/ravendb/ravendb/issues/17928#issuecomment-1874064897


A transaction in RavenDB is a request - so
TX1 and TX2 above aren’t actually single
transactions, instead, each of them repre-
sent 3 independent transactions.

This is a striking viewpoint: the point of transac-
tions is generally to provide isolation across multi-
ple requests.7 Moreover, RavenDB’s optimistic con-
currency and cluster-wide transaction mechanisms
are clearly intended to provide transactional isolation
which spans from a session’s reads to its writes. Fur-
thermore, Eini directly compared RavenDB sessions
to MongoDB transactions (which offer typical interac-
tive transaction semantics) and claimed that unlike
MongoDB, RavenDB sessions actually satisfied Snap-
shot Isolation. Yet per Eini’s comments, RavenDB
does not have interactive transactions at all.

Repeatedly advertising “ACID transactions” across
“any combination of database operations,” telling
users that a “session represents a single business
transaction,” comparing RavenDB sessions to interac-
tive transactions in other databases, offering concur-
rency control mechanisms whose scope extends across
an entire session, and finally expecting users to realize
that sessions are not transactions at all—that a trans-
action is actually limited to a single HTTP request—
stretches credulity.

Jepsen strives to evaluate databases in the context
of their marketing and documentation. Although
RavenDB’s CEO now states “we don’t support a
transaction over more than a single HTTP request,”
RavenDB’s documentation and marketing give every
appearance that a session is intended to be a transac-
tion. Jepsen has consulted with several software engi-
neers on their interpretation of these claims, and be-
lieves typical database users would come to the same
conclusion: RavenDB sessions are transactions. We
continue this interpretation throughout this report.

4.2 Recommendations

RavenDB users should be aware RavenDB transac-
tions are not ACID in any meaningful sense.8 This
holds even in single-node, single-shard deployments.
The defaults allow lost updates: you should expect
some of your writes to be silently discarded. The
strongest safety settings allow fractured read: you
might observe some, but not all, of another transac-
tion’s effects. You could appear to write “into the
middle” of another transaction. The two isolation
levels RavenDB advertises—Snapshot Isolation and
Serializable—appear impossible to obtain.

Users who designed their applications assuming
RavenDB provided interactive ACID transactions—or
even Snapshot Isolation—should carefully reevaluate

their transactions to ensure they are safe in the pres-
ence of these anomalies. Consider writing simple tests
to verify application invariants are preserved under
concurrent execution: the issues in this report are
easy to reproduce.
Jepsen recommends RavenDB remove claims of
“ACID”, “Serializable”, and “Snapshot Isolation”
from their marketing materials and documentation.
RavenDB should instead make specific, accurate, and
internally consistent claims about safety properties.
For instance, RavenDB might say “transactions offer
Read Committed by default, plus internal consistency
within the scope of a transaction: once a transaction
reads a key, subsequent reads and writes of that key
observe the originally read state, plus the effects of
that particular transaction’s writes. Transactions
allow lost update by default. Enabling cluster-wide
transactions prevents lost update, but still allows frac-
tured read,” and so on.
RavenDB’s documentation is remarkably confusing.
It repeatedly claims to offer ACID transactions, which
implies Serializability. There are specific claims that
RavenDB ensures either Serializability or Snapshot
Isolation. However, the documentation also says that
RavenDB’s database layer is an AP system based on
Last Write Wins, and the marketing material claims
isolated nodes can operate independently. This is im-
possible: totally available systems cannot provide Se-
rializability or Snapshot Isolation.9

There are systems (like Riak & Cassandra) which al-
low clients to execute either totally available opera-
tions with weak consistency, or majority available op-
erations with stronger guarantees, like Linearizabil-
ity. If RavenDB intends to build a system which
supports both modes, they should clearly distinguish
those modes throughout marketing and documenta-
tion. They have completely different availability, la-
tency, and safety characteristics. Repeated claims
that RavenDB provides ACID “without sacrificing per-
formance” are provably impossible, and should be
rewritten to clearly explain the tradeoffs involved.
ACID transactions are clearly important to RavenDB.
It is therefore alarming that RavenDB’s documenta-
tion and GitHub comments fundamentally disagree
on what a transaction is. In one interpretation,
RavenDB offers interactive transactions, represented
by the session API, which provide relatively weak
isolation—certainly not ACID. In another interpre-
tation, RavenDB lacks interactive transactions alto-
gether. Instead, it offers a sort of micro-transaction
which (e.g.) writes multiple documents in a single
network request. In this world, sessions offer vary-
ing, weak consistency constraints that extend between
micro-transactions.
To resolve this confusion, RavenDB should pick a sin-
gle definition of “transaction” and stick with it. The

7There are databases, like FaunaDB, where transactions are written as small programs and submitted to the database in a single
request. RavenDB, like most databases, provides interactive sessions: clients make calls to load and store interspersed with
arbitrary local computation, and call saveChanges() to commit their effects. In these kinds of systems, transactions typically
encompass multiple read and write requests.

8Alternatively, “RavenDB does not have interactive transactions at all.” Readers may select their favorite interpretation throughout
this report.

9At least, not in a network which can partition.

6

https://www.youtube.com/watch?v=5ZXBR3croMA&t=23m40s
https://www.youtube.com/watch?v=5ZXBR3croMA&t=23m40s
https://github.com/ravendb/ravendb/issues/17928#issuecomment-1874064897
https://ravendb.net/why-ravendb/acid-transactions
https://ravendb.net/docs/article-page/6.0/csharp/server/clustering/cluster-transactions#case-1-multiple-concurrent-cluster-transactions
https://www.youtube.com/watch?v=5ZXBR3croMA
https://www.youtube.com/watch?v=5ZXBR3croMA
https://ravendb.net/learn/inside-ravendb-book/reader/4.0/6-ravendb-clusters
https://ravendb.net/why-ravendb/high-availability
https://jepsen.io/consistency
https://riak.com/index.html
https://cassandra.apache.org/_/index.html
https://ravendb.net/why-ravendb/acid-transactions
https://ravendb.net/why-ravendb/acid-transactions
https://lamport.azurewebsites.net/pubs/lower-bound.pdf
https://fauna.com


equivalence or difference between a transaction and
session should be clearly explained, and these terms
used consistently throughout marketing and docu-
mentation. RavenDB should provide guidance as to
the boundaries of each unit: when are multiple calls
to load performed in a single transaction? What about
store? Can a single transaction encompass both a
load and store? The consistency properties of both
transactions and sessions should be clearly and for-
mally defined. Are transactions Serializable? Do ses-
sions ensure Monotonic Atomic View? When does a
session preclude lost update, and when does it allow
it? Above all, do not tell users that sessions “represent
a single business transaction” if they are, in point of
fact, not transactions at all.

Finally, if RavenDB transactions are truly intended
to cover only a single network request, consider us-
ing a different term altogether, and avoid compar-
isons to databases which do have interactive trans-
actions. Some databases call these “mini-” or “micro-
transactions,” which provides an obvious hint of their
limited scope.

4.3 Future Work

This work evaluated only single-node RavenDB clus-
ters without faults. Future research could expand
tests across multiple nodes, as well as introducing net-
work, process, and disk faults. We dealt only with key-
value operations, and did not evaluate RavenDB’s sec-
ondary indices. These indices are described as eventu-
ally consistent, which raises questions around the in-
tegrity of predicate reads. RavenDB also offers server-
side transactions using Javascript or a library of built-
in patch operations. These might offer different safety
characteristics than the interactive transactions we
used in this report. Finally, cross-shard transactions
are a notoriously challenging problem and deserve
careful testing.
Jepsen wishes to thank Irene Kannyo for her invalu-
able editorial support. Thanks as well to C. Scott An-
dreas, Taber Bain, Silvia Botros, Coda Hale, Ben Lin-
say, Kelly Shortridge, Nathan Taylor, Zach Tellman,
and Leif Walsh for their comments on early versions
of this manuscript. This work was performed indepen-
dently without compensation, in accordance with the
Jepsen ethics policy.

7

https://ravendb.net/docs/article-page/6.0/csharp/client-api/session/cluster-transaction/overview
https://ravendb.net/docs/article-page/6.0/csharp/client-api/session/what-is-a-session-and-how-does-it-work
https://ravendb.net/docs/article-page/6.0/csharp/client-api/operations/patching/single-document
https://ravendb.net/docs/article-page/6.0/csharp/client-api/operations/patching/single-document
https://www.irenekannyo.com/
https://jepsen.io/ethics

	Background
	Replication
	ACID

	Test Design
	Results
	Lost Update with Single-Node Transactions (#17927)
	Fractured Reads with Optimistic Concurrency (#17929)
	Fractured Read with Cluster-Wide Transactions (#17928)

	Discussion
	Does RavenDB Even Have Transactions?
	Recommendations
	Future Work


