
Redis-Raft 1b3fbf6
Kyle Kingsbury
2020-06-23

Redis is a popular in-memory data structure server. Historically, Redis has supported a number of ad hoc
replication mechanisms, but none guaranteed stronger than causal consistency. Redis-Raft aims to bring strict
serializability to Redis by means of the Raft consensus algorithm. We found twenty-one issues in development
builds of Redis-Raft, including partial unavailability in healthy clusters, crashes, infinite loops on any request,
stale reads, aborted reads, split-brain leading to lost updates, and total data loss on any failover. All but one
issue (a crash due to assertion failure around snapshots) appear addressed in recent development builds. This
work was funded by Redis Labs and conducted in accordance with the Jepsen ethics policy.

1 Background

Redis is a fast single-threaded data structure server,
commonly used as a cache, scratchpad, queue, or coor-
dination mechanism between distributed applications.
It offers operations over a broad array of datatypes,
including binary blobs, lists, sets, sorted sets, maps,
geohashes, counters, channels, streams, and more. In
recent years, an increasing cohort of production users
have deployed Redis as a system of record, spurring
an increased focus on safety and reliability.

In addition to individual operations, Redis supports
Lua scripts, and a transaction mechanism called
MULTI which allows clients to group together opera-
tions into an atomically executed batch. MULTI does
not provide interactive transactions; the results of op-
erations are only realized after the transaction is com-
mitted. The WATCH command allows transactions to
check whether a key has remained unmodified since
its last read—an optimistic concurrency control prim-
itive.

1.1 Existing Replication Mechanisms

Redis offers several replication mechanisms, each
with distinct trade-offs. Redis’s initial replication
mechanism sent updates asynchronously from pri-
mary to secondary nodes—secondaries overwrote
their state with whatever the primary happened to
have at that point in time. Failover was performed by
hand, or via third-party watchdogs like Pacemaker.

Redis Sentinel, introduced in 2012, allowed nodes
to automatically select new primaries with the help
of external processes executing a homegrown fault-
detection and leader-election algorithm. Sentinel lost
data during network partitions, and continues to do so
as of this writing:

In general Redis + Sentinel as a whole are a
an [sic] eventually consistent system where
the merge function is last failover wins, and
the data from old masters are discarded to
replicate the data of the current master,
so there is always a window for losing ac-
knowledged writes.

A second replication strategy, Redis Cluster, provides
transparent sharding and majority availability. Like
Redis Sentinel, it uses asynchronous replication, and
can lose acknowledged writes during some types of net-
work failures:

Usually there are small windows where ac-
knowledged writes can be lost. Windows to
lose acknowledged writes are larger when
clients are in a minority partition.

Redis Enterprise, a commercial offering from Re-
dis Labs, includes a third replication strategy called
“Active-Active Geo-Distribution”, which is based on
Conflict-free Replicated Data Types (CRDTs). Sets
use observed-removed sets, counters use a novel re-
settable counter implementation, and maps merge up-
dates on a key-wise basis. Some data types, like
strings and the values of maps, are resolved using last-
write-wins, which is subject to lost updates.

Redis Sentinel, Redis Cluster, and Active-Active Geo-
Distribution all allow lost updates—at least for some
workloads. To mitigate this risk, Redis includes a WAIT
command, which ensures prior writes are “durable
even if a node catches on fire and never comes back
to the cluster”. Moreover, Redis Enterprise claims to
offer “full ACID compliance with its support for MULTI,
EXEC, WAIT, DISCARD, and WATCH commands.”

So, does Redis Enterprise lose updates? Or is it “full
ACID”? The Redis-Raft documentation casts doubt on
ACID claims,1 noting that WAIT “does not make the sys-
tem strongly consistent overall”. In discussions with
Jepsen, Redis Labs clarified that Redis Enterprise can

1Redis-Raft documentation was not, as of this writing, available to the public.

1

https://redis.io/
https://jepsen.io/consistency/models/causal
https://jepsen.io/consistency/models/strict-serializable
https://jepsen.io/consistency/models/strict-serializable
https://raft.github.io/
https://redislabs.com
https://jepsen.io/ethics.html
https://redis.io/
https://redis.io/commands
https://redis.io/topics/transactions
https://wiki.clusterlabs.org/wiki/Pacemaker
https://github.com/antirez/redis-doc/commit/6a1e0602f62ed31e84d3656071c863cc9a4dfeb6
https://aphyr.com/posts/283-jepsen-redis
https://aphyr.com/posts/283-jepsen-redis
https://redis.io/topics/sentinel
https://redis.io/topics/cluster-spec
https://redislabs.com/redis-enterprise/
https://redislabs.com/
https://redislabs.com/
https://hal.inria.fr/inria-00609399v1/document
https://pages.lip6.fr/Marc.Shapiro/papers/CRDTs_SSS-2011.pdf
https://docs.redislabs.com/latest/rs/concepts/
https://docs.redislabs.com/latest/rs/concepts/
https://docs.redislabs.com/latest/rs/concepts/
https://redislabs.com/redis-enterprise/
https://redislabs.com/redis-enterprise/
https://github.com/RedisLabs/redisraft/blob/8da0c777e5d6865435115725241a50c6798ed185/docs/Introduction.md
https://github.com/RedisLabs/redisraft/blob/8da0c777e5d6865435115725241a50c6798ed185/docs/Introduction.md


offer ACID characteristics, but only with significant
limitations. Replication must be disabled, the write-
ahead log must be set to fsync on every write, and
there is no way to roll back when transactions fail.
These factors are not clearly documented, but Redis
Labs plans to document them in the future.

In short, users who want fault-tolerance and not lost
updates need something stronger than existing Re-
dis replication systems. Whereupon: the creation of
Redis-Raft.

1.2 Redis-Raft

The fourth Redis replication mechanism, and the fo-
cus of the present work, is Redis-Raft, which uses
the Raft consensus algorithm to replicate Redis’s state
machine across a set of nodes.

Redis-Raft claims to make Redis “effectively a CP sys-
tem.” Putting all operations through the Raft log
should allow operations to be linearizable. Since op-
erations on different keys go through the same Raft
state machine, and since MULTI transactions are imple-
mented as a single Raft operation, Redis-Raft should
also offer strict serializability—both for individual op-
erations and for transactions.

Redis-Raft started as a proof-of-concept in February
2018, and Redis Labs has been working towards a pro-
duction release since mid-2019. During our collabo-
ration, Redis-Raft was unavailable to the public, but
Redis Labs plans to make the source available at Re-
disconf 20, and aims for a general availability release
as a part of Redis 7.0.

2 Test Design

We designed a test suite for Redis-Raft using the
Jepsen testing library. Since Redis-Raft relies on fea-
tures in the unstable branch of Redis, we ran our tests
against Redis f88f866 and 6.0.3, and development
builds of Redis-Raft from 1b3fbf6 through e0123a9.
All tests were run on five-node Debian 9 clusters, on
both LXC and EC2. We introduced a number of faults
during our testing process, including process pauses,
crashes, network partitions, clock skew, and member-
ship changes.

Prior Jepsen tests have relied on a broad variety of
workloads, each designed to detect different anoma-
lies, or to compensate for performance limitations in
other workloads. Over the last year, Jepsen collabo-
rated with UC Santa Cruz’ Peter Alvaro to design a
new type of consistency checker, which operates in lin-
ear (rather than exponential) time, over a broad range
of transactions and single-key operations, which veri-
fies a wide range of safety properties up to strict seri-
alizability, and which provides understandable, local-
ized counterexamples for safety property violated. We
call this checker Elle.

We used Elle exclusively in this analysis, measuring
Redis’s safety with respect to transactions over lists.

Each transaction (or singleton operation) is comprised
of read and append operations over a small, evolving
set of keys. Reads return the current state of the list
using LRANGE, and appends add a distinct element to
the end of the list using RPUSH. Elle infers dependency
relationships between these transactions—including
write-write, write-read, and read-write data depen-
dencies, as well as realtime orders—and looks for cy-
cles in that dependency graph as evidence of strict-
serializability violations.

3 Results

We identified twenty-one issues in Redis-Raft, ranging
from transient unavailability, to behavior that could
make it difficult to write correct client programs, to
complete data loss.

3.1 Infinite Loops

Raft is a leader-based protocol: requests cannot be exe-
cuted by followers, but must be sent to a leader instead.
Redis clients can follow redirects to submit their oper-
ations directly to a (hopefully current) leader, or, with
the follower-proxy=yes option, Redis followers can
proxy requests to a leader on the client’s behalf.

With this proxy mode enabled, we found that exe-
cuting any write against Redis-Raft 1b3fbf6 sent the
cluster into an infinite loop: the operation would be
applied to the log over and over again, ballooning
the Raft log and (depending on the write) Redis’s in-
memory and on-disk state.

This problem (#13) was caused by a missing re-
entrancy check. Redis-Raft works by intercepting
client commands (e.g. SET key val) and re-writing
them to a special Raft command (RAFT SET key val).
That Raft command is then replicated through the
Raft log, and, once committed, unwrapped (producing
SET key val) and applied to the local state machine.
However, the interception code would then identify
that command as one that needed to be sent to the
Raft log, wrap it in a RAFT command again, and send
it back through the consensus system. Adding a re-
entrancy check to the interception logic resolved the
issue, in version d589127.

3.2 Total Data Loss on Failover

When we evaluated Redis-Raft 1b3fbf6 without fol-
lower proxies, we found that any failover would cause
the loss of all committed data. Newly elected leaders
would come online with a completely fresh state. This
problem was trivially reproducible at the CLI, as well
as in append tests.

This issue (#14) was caused by the same missing re-
entrancy check as #13. When a leader processed an

2

https://raft.github.io/
https://github.com/RedisLabs/redisraft/tree/8da0c777e5d6865435115725241a50c6798ed185
https://github.com/RedisLabs/redisraft/tree/8da0c777e5d6865435115725241a50c6798ed185
https://jepsen.io/consistency/models/linearizable
https://jepsen.io/consistency/models/strict-serializable
https://github.com/jepsen-io/redis
https://github.com/jepsen-io/jepsen
https://github.com/jepsen-io/redis/blob/7f8befef1db1bc7fb10c6b9c1053321dfb404c7a/src/jepsen/redis/nemesis.clj#L193-L234
https://people.ucsc.edu/~palvaro/
https://github.com/jepsen-io/elle
https://github.com/jepsen-io/redis/blob/7f8befef1db1bc7fb10c6b9c1053321dfb404c7a/src/jepsen/redis/append.clj#L21-L24
https://redis.io/commands/lrange
https://redis.io/commands/rpush
https://github.com/RedisLabs/redisraft/issues/13
https://github.com/RedisLabs/redisraft/issues/13
https://github.com/RedisLabs/redisraft/issues/13
https://github.com/RedisLabs/redisraft/commit/d5891273330742f276676da97702124c87c87d58#diff-86bb0045d4e2b5b813307eb63c5895a1R152
https://github.com/RedisLabs/redisraft/commit/d5891273330742f276676da97702124c87c87d58#diff-86bb0045d4e2b5b813307eb63c5895a1R152
https://github.com/RedisLabs/redisraft/issues/14
https://github.com/RedisLabs/redisraft/issues/14
https://github.com/RedisLabs/redisraft/issues/13


operation, it applied it to its local state machine. Fol-
lowers, however, would intercept the operation, trans-
form it to a RAFT operation, and then (proxy mode be-
ing disabled) reject the operation because they weren’t
the leader.

Like #13, this issue was fixed by d589127.

3.3 Split-Brain & Lost Updates

The Raft paper includes an algorithm for performing
online membership changes. When nodes are added
to or removed from the cluster, Raft enters a special
joint consensus mode, in which a majority of the origi-
nal members and a majority of the new members must
agree on each operation before commit. Once a ma-
jority of the original cluster have acknowledged the
new membership, the cluster resumes normal opera-
tion, requiring acknowledgement only from a majority
of the new members.

Redis-Raft d589127 did not correctly implement this
system. Leaders could execute membership changes
independently, without getting confirmation from any
other node. A leader could be isolated by a network
partition, process pause, or crash, successfully remove
every other node in the cluster, declare itself the sole
leader of the resulting single-node cluster, and pro-
ceed to execute arbitrary operations on its own. Given
𝑛 nodes and a sufficiently pathological operator, Redis-
Raft could split into 𝑛 separate clusters, each diverg-
ing from some common prefix of the original cluster’s
history.

This issue (#17) was caused by a bug in the underlying
Raft library: RAFT_LOGTYPE_REMOVE_NODE was left out
of the set of log entry types which counted as voting
configuration changes. Version 8da0c77 resolved the
problem.

3.4 Transient Empty Reads on Startup

In version d589127, we found that killing and restart-
ing nodes led to a short window of time following node
startup where that node could return the empty state
for a read, rather than committed state. This error
was transient: a few seconds later, reads would ob-
serve expected values again.

For instance, a client might execute a transaction
which appends 89 to key 0, and reads the resulting
list:

• 𝑇1: [:append 0 89] [:r 0 [...86 87 89]]

Then, following a process start, a read of key 0 on the
freshly started node would return no elements:

• 𝑇2: [:r 0 []]

The Redis team tracked this problem (#18) to a bug in
the underlying Raft library. Whenever a new leader is
elected, that leader should issue a no-op log entry to
its followers, in order to establish what current state is
committed. This behavior was missing from the Raft
library packaged with Redis-Raft. Pulling a newer ver-
sion helped resolve the issue, and Redis-Raft dfd91d4
no longer exhibited this behavior.

3.5 Stale Reads in Healthy Clusters

Versions d589127 and 8da0c77 also exhibited stale
reads in normal operation, without any faults. For
instance, consider this pair of transactions, where 𝑇1
completed 3.25 seconds before 𝑇2 began:

• 𝑇1: [:append 1 11]
• 𝑇2: [:r 1 [5 8 9]]

If Redis-Raft were linearizable, then 𝑇1’s append of 11
to key 1 should have been visible in 𝑇2’s read—but in-
stead, 𝑇2 observed only [5 8 9]. This is a stale read:
a view into the past.
Like #18, this issue (#19) hinged on the failure of lead-
ers to issue a no-op operation upon coming to power;
it was also fixed in dfd91d4.

3.6 Spurious NOLEADER in Healthy Clusters

In versions 8da0c77 through 73ad833, we found that
healthy clusters tended to experience partial outages
for no apparent reason. With sub-millisecond net-
work latencies and without fault injection, some nodes
would return NOLEADER for hundreds of seconds, then
recover as if nothing had happened. Occasionally,
nodes would begin timing out new connections, rather
than returning NOLEADER.

Redis Labs traced this problem (#21 to a head-of-line
blocking problem where when a new node became a
leader, proxied commands from followers could delay
(possibly indefinitely) Raft messages, which caused
Raft operations to stall on some nodes following an
election. This problem was exacerbated by aggressive
default timeouts, which caused elections to occur fre-
quently in otherwise healthy clusters.

To fix this issue, Redis Labs added a timeout mecha-
nism to proxied commands, and adjusted the default
timeouts to reduce spurious elections due to normal
variability in node response times. These patches
were applied in 6fca76c. As of b9ee410, Redis-Raft ex-

hibits occasional NOLEADER hiccups every few minutes,
but they resolve within seconds.

3.7 Aborted Reads With NOLEADER

In version dfd91d4, we observed what appeared to be
aborted reads involving network partitions and pro-
cess crashes. Operations would fail with the NOLEADER
error code, but their effects would still be visible to
later transactions. For instance, take this pair of
transactions from an append test run:

• 𝑇1: [:append 295 223]

3

https://github.com/RedisLabs/redisraft/issues/13
https://github.com/RedisLabs/redisraft/issues/17
https://github.com/RedisLabs/redisraft/issues/17
https://github.com/RedisLabs/redisraft/issues/17
https://github.com/yossigo/raft/commit/da936a95bb8f89ce55708dfd6156f3ca08773a3f#diff-857b5d8f957ff267859c82da4461e650R1182
https://github.com/RedisLabs/redisraft/issues/18
https://github.com/RedisLabs/redisraft/issues/18
https://github.com/RedisLabs/redisraft/issues/18
https://github.com/yossigo/raft/compare/2b8aa47db0bfde97c45fa4363dcee4b6feb9062c...5d7915f313d3abde5dc63eb88b114d53b854e19b
https://github.com/yossigo/raft/compare/2b8aa47db0bfde97c45fa4363dcee4b6feb9062c...5d7915f313d3abde5dc63eb88b114d53b854e19b
https://github.com/RedisLabs/redisraft/issues/19
https://github.com/RedisLabs/redisraft/issues/19
https://github.com/RedisLabs/redisraft/issues/18
https://github.com/RedisLabs/redisraft/issues/19
https://github.com/RedisLabs/redisraft/issues/21
https://github.com/RedisLabs/redisraft/issues/21
https://github.com/RedisLabs/redisraft/pull/34/commits/d33344daed54e80b419b74234095a7f0e15be55e
https://github.com/RedisLabs/redisraft/pull/34/commits/d33344daed54e80b419b74234095a7f0e15be55e
https://github.com/RedisLabs/redisraft/issues/23
https://github.com/RedisLabs/redisraft/issues/23
https://github.com/RedisLabs/redisraft/files/4326341/20200312T151542.000-0400.zip


• 𝑇2: ... [:r 295 [223 228 229 233]] ...

Here, 𝑇1 failed with NOLEADER, but 𝑇2 was able to ob-
serve 𝑇1’s write (as well as several other appends). Re-
dis Labs’ engineers confirmed that NOLEADER indicates
an operation definitely failed, which means this pair
of transactions constitutes an aborted read.

This issue (#23) was addressed by a package of
protocol-level fixes in version e657423; we have not ob-
served it since.

3.8 DISCARD Doesn't Always Discard

In Redis, one begins a transaction by sending MULTI,
a sequence of commands, and a final EXEC to commit,
or DISCARD to abort. This makes it straightforward for
Redis clients to offer some sort of transactional flow
control context, e.g. using exception handlers:

try {
conn.multi();
conn.put(k1, v1);
conn.put(k2, v2);
r = client.exec();

} catch Exception e {
conn.discard();
throw e;

}

This code is simple, and works correctly some of the
time. However, in Redis-Raft, calls to DISCARD can
(and often do!) fail, e.g. for NOLEADER, NOTLEADER, etc.
This leaves the connection in the MULTI state, with op-
erations buffered by Redis. Subsequent calls will ex-
ecute in the previous MULTI context, which could lead
to confusing results: transactions could be mixed to-
gether with unanticipated effects, return values from
EXEC could be those for completely different operations,
etc. Using MULTI correctly requires careful attention to
tracking connection state.

This problem (#25) occurred because Redis-Raft per-
forms cluster state checks on each command individ-
ually, rather than buffering commands on the local
server and submitting the entire batch on EXEC. This
problem was addressed in version f4bb49f by moving
the MULTI state machine into the local node, allowing
it to buffer operations in memory and commit them in
an atomic batch.

3.9 Crossed Wires

With version dfd91d4, we found that network parti-
tions and process crashes could lead Redis to reply to
queries with answers for different queries. For exam-
ple, a client could execute a single read…

LRANGE 33 0 -1

… And get back a MULTI reply intended for some other
client altogether:

[3 4 ["2" "4" "21" "22"]]

This is a reply to a MULTI...EXEC transaction which
performed two appends (resulting in lists of length 3
and 4, respectively) followed by a list read (which re-
turned 2, 4, …). Notably, this response has nothing
to do with the client’s request, nor any other request
this client made. In this particular case, the client
performed the LRANGE request with a fresh connection.
Like #25, this could lead to type errors or silent data
corruption, depending on whether the response types
happened to match those expected by the requester.
This issue (#26) involved multiple bugs in Redis-Raft’s
proxy mechanism. In the Redis command handler,
replies for proxied commands were accidentally routed
to the Redis-Raft context, rather than the request con-
text. Leaders needed to apply pre-bundled MULTI
transactions immediately, rather than re-bundling
them. Redis Labs also added more defensive error
handling to asynchronous context cleanups.
Version e657423, which includes all these fixes, ap-
pears to have resolved the issue.

4

https://github.com/RedisLabs/redisraft/issues/23
https://github.com/RedisLabs/redisraft/pull/27
https://github.com/RedisLabs/redisraft/issues/25
https://github.com/RedisLabs/redisraft/issues/25
https://github.com/RedisLabs/redisraft/issues/25
https://github.com/RedisLabs/redisraft/pull/27/commits/f4bb49f1a1e1f988fe9643942e1b210be4879f38
https://github.com/RedisLabs/redisraft/pull/27/commits/f4bb49f1a1e1f988fe9643942e1b210be4879f38
https://github.com/RedisLabs/redisraft/issues/26
https://github.com/RedisLabs/redisraft/issues/26
https://github.com/RedisLabs/redisraft/issues/25
https://github.com/RedisLabs/redisraft/issues/26
https://github.com/RedisLabs/redisraft/pull/27/commits/b2e46690ffb45d0b58800511452da783f5018c93
https://github.com/RedisLabs/redisraft/pull/27/commits/b2e46690ffb45d0b58800511452da783f5018c93
https://github.com/RedisLabs/redisraft/pull/27/commits/cec6398356a5ab61cda5b28e01febb22ec6752d5
https://github.com/RedisLabs/redisraft/pull/27/commits/cec6398356a5ab61cda5b28e01febb22ec6752d5
https://github.com/RedisLabs/redisraft/pull/27/commits/cec6398356a5ab61cda5b28e01febb22ec6752d5
https://github.com/RedisLabs/redisraft/pull/27/commits/3c576b9513a3605196789255a767da1e05ac5076
https://github.com/RedisLabs/redisraft/pull/27/commits/3c576b9513a3605196789255a767da1e05ac5076


3.10 Split-Brain & Lost Update Redux

In version f88f866, we found another case of split-
brain, this time involving membership changes and
process crashes. Two nodes could diverge from a com-
mon history, or even apply the same operation to dif-
ferent local states. Consider, for example, these reads
of key 81: transactions 𝑇2 and 𝑇4, executing on node
n1, observe lists starting with 171 and 172, whereas
𝑇1 and 𝑇3, executing on node n5, begin with 176 in-
stead.

• 𝑇1: [:r 81 [176 177 178]]
• 𝑇2: [:r 81 [171 172 176 177 178]]
• 𝑇3: [:r 81 [176 177 178 208]]
• 𝑇4: [:r 81 [171 172 176 177 178 208]]

Note that appends of 178 and 208 are applied to both
sides of the split-brain, on top of different prefixes!

Redis Labs traced this issue (#28) to the cluster mem-
bership system. The underlying Raft library assumed
that nodes would be demoted then removed from the
cluster, rather than removed directly. There was also
an issue in which nodes simply stepped down after
being removed from the cluster, leaving their data
files in place. Re-joining a removed node to the clus-
ter could cause it to violate safety invariants. Redis
Labs addressed this issue by forcing removed nodes
to archive their local state before termination. As of
version bc9552f, Redis-Raft no longer exhibited split-
brain with membership changes.

3.11 Yet More Transient Empty Reads

In version bc9552f, we found yet another case of empty
reads after startup, triggered by a combination of
membership changes and process crashes. If a node
started up after membership changes, it could tem-
porarily return empty values instead of committed
data. For example…

• 𝑇1: [[:r 37 [5 9 13 1 19 20]]]
• 𝑇2: [[:r 37 []]]
• 𝑇3: [[:r 37 [5 9 13 1 19 20]] ...

Here, nodes restarted just prior to 𝑇2. This problem
was relatively infrequent—it required several hours of
randomized fault injection to discover, and upwards of
five minutes to reproduce with targeted faults.

Redis Labs traced this issue (#30) to two bugs in the
log-loading process on startup. First, when a node’s
log indicated that only a single (voting) node existed,
a special case in the log-loading code should have al-
lowed Redis-Raft to treat its log as fully committed,
but this codepath counted all nodes, rather than vot-
ing nodes. Second, during log loading, Redis-Raft in-
correctly treated nodes which were previously part of
the cluster as if they were still active, and could ex-
change messages with them. Nodes could even send
messages to themselves. Both of these problems were
addressed in 73ad833.

3.12 Spontaneous Snapshot Crash

With Redis-Raft b9ee410, we observed that nodes
would occasionally crash under normal operation, cit-
ing a failed assertion in callRaftPeriodic. This issue
(#42) appeared linked to an unexpected return value
from pollSnapshotStatus. Redis Labs is investigat-
ing.

3.13 Panic! At The Raft Log

In b9ee410, we found that with process crashes,
pauses, partitions, and membership changes, nodes
frequently wound up with unrecoverable on-disk
states where their snapshot file was taken from a
log index significantly before the first entry in the log.
Any attempt to start the node would panic, logging
something like Log initial index (1478) does not
match snapshot last index (1402), aborting.
Multiple nodes encountered the problem

We did not have time to narrow down the conditions
under which this bug (#43) occurs, and were unable
to identify a cause. However, this issue no longer ap-
peared in e0123a9.

3.14 Split-Brain, Take III

Version b9ee410 exhibited yet another case of split-
brain, which we observed repeatedly during tests with
process crashes, pauses, partitions, and membership
changes. As with previous split-brain issues, some
nodes in the cluster would diverge from a shared prefix
of the history, allowing reads and updates to proceed
independently. Updates could be lost, depending on
which branch(es) of the history survived.

This behavior (#44) appears to stem from a bug in
the snapshot loading process on node startup: the
loader failed to mark the loading process as complete,
and did not update the snapshot metadata in memory.
The resulting configuration was usable by the running
process, but taking a new snapshot from that state
resulted in nodes missing from the snapshot cluster
state! This bug appeared fixed as of 2d1cf30.

3.15 Crash With raft_node_is_voting(me_)

In version 2d1cf30, tests with process crashes, pauses,
partitions, and membership changes revealed a crash
due to an assertion failure when updating the local
raft node’s voting state. Restarting the node recovered
the process, and no safety impact was detected.

Like #42, #43, and #44, this bug (#48) arose late in
our testing process; we have little information about
its cause, or what circumstances are necessary to trig-
ger it. No cause was ascertained, but we believe this
issue was resolved by e0123a9.

5

https://github.com/RedisLabs/redisraft/issues/28
https://github.com/RedisLabs/redisraft/issues/28
https://github.com/RedisLabs/redisraft/issues/28
https://github.com/yossigo/raft/commit/2c10536281f844d457653fb8bb2f5a9fcbe8fcc8
https://github.com/RedisLabs/redisraft/commit/eeffbf0b513c61a59dace1f709785b3377244ce0
https://github.com/RedisLabs/redisraft/commit/eeffbf0b513c61a59dace1f709785b3377244ce0
https://github.com/RedisLabs/redisraft/issues/30
https://github.com/RedisLabs/redisraft/issues/30
https://github.com/RedisLabs/redisraft/issues/30
https://github.com/RedisLabs/redisraft/pull/31/commits/bec180f9f9a73861c768c1e2478f4261a5a57e4b#diff-d05910b6e13b06694af41af9047eae1fR594
https://github.com/RedisLabs/redisraft/pull/31/commits/bec180f9f9a73861c768c1e2478f4261a5a57e4b#diff-8975934304501d000c20a990ce297aaaL329
https://github.com/RedisLabs/redisraft/blob/b9ee410cedf524c55577b40e739543ef9228eadb/raft.c#L784
https://github.com/RedisLabs/redisraft/issues/42
https://github.com/RedisLabs/redisraft/issues/43
https://github.com/RedisLabs/redisraft/issues/43
https://github.com/RedisLabs/redisraft/issues/43
https://github.com/RedisLabs/redisraft/issues/44
https://github.com/RedisLabs/redisraft/issues/44
https://github.com/RedisLabs/redisraft/issues/44
https://github.com/RedisLabs/redisraft/commit/51c1b782493512533d7f8d277c95531023d68b95
https://github.com/RedisLabs/redisraft/commit/51c1b782493512533d7f8d277c95531023d68b95
https://github.com/RedisLabs/raft/blob/0990cf7be9260d8b151714f88073c513207b4cff/src/raft_node.c#L124
https://github.com/RedisLabs/raft/blob/0990cf7be9260d8b151714f88073c513207b4cff/src/raft_node.c#L124
https://github.com/RedisLabs/redisraft/issues/48


3.16 Crash With !uv__is_closing(handle)

Also in version 2d1cf30, and under similar condi-
tions to #48, we found another crash (#49) in libuv’s
unix/poll.c. Like #48, this crash seemed recoverable,
and there was no observable safety impact. No cause
was ascertained, but we believe this crash was re-
solved by e0123a9.

3.17 Mysterious Segfault

We found yet another crash in 2d1cf30, where nodes oc-
casionally crashed during tests with crashes, pauses,
partitions, and membership changes. The error mes-
sage provided little to go on, other than citing a
SIGSEGV crash, a blank address, no assertion, no file,
no line number, and no stacktrace.
We observed no safety impact associated with this is-
sue (#50), and the node recovered when restarted. No
cause was ascertained, but we believe this crash was
resolved by e0123a9.

3.18 Crash in EntryCacheAppend

In 2d1cf30, process pauses, or crashes, or net-
work partitions, could each independently trigger
an assertion crash: EntryCacheAppend: Assertion
'cache->start_idx + cache->len == idx'. This
crash (#51) did not seem associated with any safety
impact. We were unable to ascertain the cause of this
issue, but it did not appear in e0123a9.

3.19 Rewriting History

Again in 2d1cf30, we found that process crashes alone
were sufficient to cause Redis-Raft nodes to disagree

over history: nodes could delete or duplicate opera-
tions, even operations well in the past which had been
superceded by dozens of committed writes! Nodes
could flip back and forth between various versions of
the same history.

For instance, consider this test run, where a process
appends 25 to key 297, 25 is visible to reads against
three nodes, and then, after a process is killed and
restarted, element 25 is retroactively erased from the
history. We present just the observed values of key
297, and elide some elements for clarity:

[:r 297 [1 3 2 ... 26 25]]
[:r 297 [1 3 2 ... 26 25 27]]
[:r 297 [1 3 2 ... 26 25 27 ... 47]]
[:r 297 [1 3 2 ... 26 25 27 ... 48]]
[:r 297 [1 3 2 ... 26 27 29 ... 106]]
[:r 297 [1 3 2 ... 26 27 29 ... 120]]

We suspect this “time travel” revision of key 297’s his-
tory indicates a violation of the Raft log agreement
invariant, but because this issue (#52]) arose late in
our testing process, we are unsure of its cause. It ap-
peared fixed as of e0123a9.

3.20 AppendEntries TermMismatch

2d1cf30, ever the font of new and exciting discov-
eries, offered up a new crash (#53) during process
crashes and network partitions. In response to the
Raft AppendEntries RPC call, nodes could crash, com-
plaining that their previous term in the log didn’t
match that of the AppendEntries message.

We were unable to ascertain the cause of this issue
(#53, but it appeared resolved as of e0123a9.

raft.c:479: <raftlib> AE term doesn't match prev_term (ie. 177 vs 184)
ci:12673 comi:12577 lcomi:12637 pli:12577
raft.c:479: <raftlib> AE prev conflicts with committed entry
redis-server: raft.c:784: callRaftPeriodic: Assertion `ret == 0' failed.

3.21 Another Snapshot Crash

Surprise! 2d1cf30 contained yet another crash which
arose during testing with process kills. When writ-
ing snapshots, the snapshot process could could seg-
fault during the log-rewriting process. While the main
Redis-Raft process continued running, the snapshot
process would log a segfault in RaftLogWriteEntry.
This issue (#54) co-occurred with duplicate elements
and incompatible reads, as reported earlier—the two
might be related. We were unable to ascertain a
cause for this issue, but it appeared resolved as of
e0123a9.

6

https://github.com/RedisLabs/redisraft/issues/50
https://github.com/libuv/libuv/blob/2d427ee0083d1baf995df4ebf79a3f8890e9a3e1/src/unix/poll.c#L112
https://github.com/RedisLabs/redisraft/issues/50
https://github.com/RedisLabs/redisraft/issues/50
https://github.com/RedisLabs/redisraft/issues/50
https://github.com/RedisLabs/redisraft/issues/51
https://github.com/RedisLabs/redisraft/issues/52
https://github.com/RedisLabs/redisraft/issues/52
https://github.com/RedisLabs/redisraft/files/4605763/20200510T091809.000-0400.zip
https://github.com/RedisLabs/redisraft/issues/52
https://github.com/RedisLabs/redisraft/issues/53
https://github.com/RedisLabs/redisraft/issues/53
https://github.com/RedisLabs/redisraft/issues/54
https://github.com/RedisLabs/redisraft/issues/54
https://github.com/RedisLabs/redisraft/issues/54


№ Summary Event Required Fixed In
13 Infinite loops with follower-proxy None d589127
14 Total data loss Failover d589127
17 Split-brain & lost updates Partition & membership change 8da0c77
18 Transient empty reads Node startup dfd91d4
19 Stale reads None dfd91d4
21 Partial failure returning NOLEADER None 6fca76c
23 Aborted reads with NOLEADER Partition & crash e657423
25 DISCARD doesn’t always discard None f4bb49f
26 Crossed wires with follower-proxy Partition & crash e657423
28 Split-brain & lost updates Crash & membership change bc9552f
30 More transient empty reads Crash & membership change 73ad833
42 Crash with callRaftPeriodic: ret == 0 None Unresolved
43 Panic on startup due to Raft log index mismatch Partition, crash, pause & membership? e0123a9
44 Split-brain & lost updates Partition, crash, pause & membership? 2d1cf30
48 Crash with raft_node_is_voting(me_) Partition, crash, pause & membership? e0123a9
49 Crash with !uv__is_closing(handle) Partition, crash, pause & membership? e0123a9
50 Mystery Segfault Partition, crash, pause & membership? e0123a9
51 Crash in EntryCacheAppend Pause e0123a9
52 Rewriting history, write loss, duplicate elements Crash e0123a9
53 AppendEntries term mismatch Partition & crash e0123a9
54 Snapshot crash in RaftLogWriteEntry Crash e0123a9

4 Discussion

Redis-Raft is an unreleased project under develop-
ment; we expect to find bugs at this stage. Indeed,
we found twenty-one issues, including long-lasting un-
availability in healthy clusters, eight crashes, three
cases of stale reads, one case of aborted reads, five
bugs resulting in the loss of committed updates, one
infinite loop, and two cases where logically corrupt re-
sponses could be sent to clients. The first version we
tested (1b3fbf6) was essentially unusable: depending
on the choice of follower-proxy, it either entered an
infinite loop on receiving any write, or lost all data on
any failover.

We emphasize, again, that these are all internal devel-
opment builds: Redis-Raft has no production users, so
the real-world impact of these issues is negligible.

As of version e0123a9, all but one issue (#42) we
observed in previous builds appeared resolved. We
should note that we have not tested e0123a9 as ex-
tensively as other builds—it may contain additional
bugs.

As always, we note that Jepsen takes an experimental
approach to safety verification: we can prove the pres-
ence of bugs, but not their absence. While we try hard
to find problems, we cannot prove the correctness of
any distributed system.

Tangentially, we were surprised to discover that Re-
dis Enterprise’s claim of “full ACID compliance” only
applied to specially-configured non-redundant deploy-
ments, rather than replicated clusters. While Jepsen
has not experimentally confirmed data loss in Redis
Enterprise, our discussions with Redis Labs suggest
that users should not, in general, assume that multi-
node Redis deployments offer ACID guarantees. We

agree with Redis Labs that the documentation should
make this clear.

4.1 Future Work

Redis Labs plans to continue development of Redis-
Raft, with an aim towards general availability in
2021.

We designed only a single workload for Redis-Raft: the
append test. This test is powerful, efficient, general,
and captures a broad range of safety criteria. However,
it is limited to evaluating just two Redis data com-
mands: LRANGE and RPUSH. We believe this approach
should still give good coverage, since Redis-Raft treats
many commands alike. However, there could be other
behaviors given different commands. In future work,
we believe it be prudent to explore other types of oper-
ations: GET and SET, perhaps, or operations on sets.

Jepsen’s membership tests are fragile, partly due to
the asynchronous nature of Redis’s node add/remove
commands. Under certain circumstances, it appears
that Jepsen could delete the data files for running
nodes when performing membership tests. While this
does not appear to have impacted our findings, it de-
serves revisiting, especially once Redis-Raft supports
synchronous node removal.

We have not explored single-node faults, such as
filesystem corruption or the loss of un-fsynced data
written to disk. Both might be of interest for Redis-
Raft, whose correctness hinges (like most consensus
systems) on single-node durability.

Our work in this analysis was limited to Redis-Raft—
Jepsen has not recently evaluated Redis Sentinel, and
has never evaluated Redis Cluster, Active-Active Geo-
Distribution, or Redis Enterprise behavior. It might

7

https://github.com/RedisLabs/redisraft/issues/13
https://github.com/RedisLabs/redisraft/issues/14
https://github.com/RedisLabs/redisraft/issues/17
https://github.com/RedisLabs/redisraft/issues/18
https://github.com/RedisLabs/redisraft/issues/19
https://github.com/RedisLabs/redisraft/issues/21
https://github.com/RedisLabs/redisraft/issues/23
https://github.com/RedisLabs/redisraft/issues/25
https://github.com/RedisLabs/redisraft/issues/26
https://github.com/RedisLabs/redisraft/issues/28
https://github.com/RedisLabs/redisraft/issues/30
https://github.com/RedisLabs/redisraft/issues/42
https://github.com/RedisLabs/redisraft/issues/43
https://github.com/RedisLabs/redisraft/issues/44
https://github.com/RedisLabs/redisraft/issues/48
https://github.com/RedisLabs/redisraft/issues/49
https://github.com/RedisLabs/redisraft/issues/50
https://github.com/RedisLabs/redisraft/issues/51
https://github.com/RedisLabs/redisraft/issues/52
https://github.com/RedisLabs/redisraft/issues/53
https://github.com/RedisLabs/redisraft/issues/54
https://github.com/RedisLabs/redisraft/issues/42
https://redislabs.com/redis-enterprise/


be interesting to compare these systems: each has doc-
umented drawbacks, but we have no qualitative view
of how serious these problems might be, or what un-
documented behaviors might be present.
We look forward to Redis-Raft’s eventual release.

This work was funded by Redis Labs, and conducted
in accordance with the Jepsen ethics policy. Jepsen
wishes to thank the Redis team for their invalu-
able assistance—especially Yossi Gottlieb and Yiftach
Shoolman. Our thanks as well to Coda Hale for his
review. Finally, Jepsen is grateful to Irene Kannyo for
her editorial support.

8

https://redislabs.com/
https://jepsen.io/ethics.html

	Background
	Existing Replication Mechanisms
	Redis-Raft

	Test Design
	Results
	Infinite Loops
	Total Data Loss on Failover
	Split-Brain & Lost Updates
	Transient Empty Reads on Startup
	Stale Reads in Healthy Clusters
	Spurious NOLEADER in Healthy Clusters
	Aborted Reads With NOLEADER
	DISCARD Doesn't Always Discard
	Crossed Wires
	Split-Brain & Lost Update Redux
	Yet More Transient Empty Reads
	Spontaneous Snapshot Crash
	Panic! At The Raft Log
	Split-Brain, Take III
	Crash With raft_node_is_voting(me_)
	Crash With !uv__is_closing(handle)
	Mysterious Segfault
	Crash in EntryCacheAppend
	Rewriting History
	AppendEntries Term Mismatch
	Another Snapshot Crash

	Discussion
	Future Work


