
RethinkDB 2.1.5
2016-01-04

In this Jepsen report, we’ll verify RethinkDB’s support for linearizable operations using majority reads and
writes, and explore assorted read and write anomalies when consistency levels are relaxed. This work was funded
by RethinkDB, and conducted in accordance with the Jepsen ethics policy.

1 Background

RethinkDB is an open-source, horizontally scalable
document store. Similar to MongoDB, documents are
hierarchical, dynamically typed, schemaless objects.
Each document is uniquely identified by an id key
within a table, which in turn is scoped to a DB. On
top of this key-value structure, a composable query
language allows users to operate on data within doc-
uments, or across multiple documents—performing
joins, aggregations, etc. However, only operations on
a single document are atomic—queries which access
multiple keys may read and write inconsistent data.

RethinkDB shards data across nodes by primary key,
maintaining replicas of each key across n nodes for
redundancy. For each shard, a single replica is des-
ignated a primary, which serializes all updates (and
strong reads) to that shard’s documents—allowing lin-
earizable writes, updates, and reads against a single
key.

If a primary dies, we’re in a bit of a pickle. Rethink
can still offer stale reads from any remaining replica of
that shard, but in order to make any changes, or per-
form a linearizable read, we need a new primary—and
one which is guaranteed to have the most recent com-
mitted state from the previous primary. Prior to ver-
sion 2.1, RethinkDB would not automatically promote
a new primary—an operator would have to ensure the
old primary was truly down, remove it from the cluster,
and promote a remaining replica to a primary by hand.
Since every node in a cluster is typically a primary for
some shards, the loss of any single node would lead to
the unavailability of ~1/n of the keyspace.

RethinkDB 2.1, released earlier this year, introduced
automatic promotion of primaries using the Raft con-
sensus algorithm. Every node hosting a shard in a

given tablemaintains a Raft ensemble, which stores ta-
ble membership, shard metadata, primary roles, and
so on. This allows RethinkDB to automatically pro-
mote a new primary replica for a shard so long as:

1. A majority of the table’s nodes are fully con-
nected to one another, and

2. A majority of the shard’s replicas are available
to the table’s majority component

So: if we have at least three nodes, and at least three
replicas per shard, a RethinkDB table should seam-
lessly tolerate the failure or isolation of a single node.
Five replicas, and the cluster will tolerate two failures,
and so on. This majority-quorum strategy is common
for linearizable systems like etcd, Zookeeper, or Riak’s
strong buckets—and places Rethink in similar avail-
ability territory to MongoDB, Galera Cluster, et al.

RethinkDB also supports non-voting replicas, which
asynchronously follow the normal replicas’ state, are
not eligible for automatic promotion, and don’t take
part in the Raft ensemble. These replicas do not pro-
vide the usual Rethink consistency guarantees, and
are best suited to geographic redundancy for disaster
recovery, or for read-heavy workloads where consis-
tency isn’t important. In this analysis, every replica
is a voting replica.

2 Consistency guarantees

Like MongoDB, Riak, Cassandra, and other KV stores,
RethinkDB does not offer atomic multi-key operations.
In this analysis, we’ll concern ourselves strictly with
single-key consistency.

RethinkDB chooses strong defaults for update consis-
tency, andweak defaults for reads. By default, updates

1

https://jepsen.io
https://jepsen.io/ethics
http://rethinkdb.com/docs/data-types/
https://www.rethinkdb.com/docs/architecture/
http://rethinkdb.com/blog/2.1-release/
https://ramcloud.stanford.edu/raft.pdf
https://ramcloud.stanford.edu/raft.pdf
http://rethinkdb.com/docs/failover/
http://rethinkdb.com/docs/consistency/
http://rethinkdb.com/docs/consistency/


(inserts, writes, modifications, deletes, etc) to a key are
linearizable, which means they appear to take place
atomically at some point in time between the client’s
request and the server’s acknowledgement. For reads,
the default behavior is to allow any primary to service
a request using its in-memory state, which could allow
stale or dirty reads.

Like Postgres, RethinkDB defaults will not acknowl-
edge writes until they’re fsynced to disk. Users may
obtain better performance at the cost of crash safety
by relaxing the table’s or request’s durability setting
from hard to soft. As with all databases, the filesys-
tem, operating system, device drivers, and hardware
must cooperate for fsync to provide crash safety. In
this analysis, we use hard durability and do not ex-
plore crash safety.

Some databases let you tune write safety on a per-
transaction basis, which can lead to confusing se-
mantics when weakly-isolated transactions interleave
with stronger ones. RethinkDB, like Riak, enforces
write safety at the table level: all updates to a table’s
keys use the same transactional isolation. A table’s
write_acks can be either:

• single: A primary can acknowledge a write to
a client without the acknowledgement of other
replicas, or

• majority: A majority of replicas must acknowl-
edge a write first

The difference is in request latency; operations must
be fully replicated at some point, so both modes have
the same throughput, and writes always go to a pri-
mary, so a majority quorum must be present for write

availability. This differentiates RethinkDB from AP
databases like Cassandra, Riak, and Aerospike, which
offer total write availability at the cost of linearizabil-
ity, sequential consistency, etc.

Unlike write safety, read safety is controllable on a
per-request basis. This makes sense: reads never im-
pact the correctness of other reads, and relaxed con-
sistency is often preferable for large read-only queries
which can tolerate some fuzziness—e.g. analytics. Re-
thinkDB offers three read_mode flavors:

• outdated: The local in-memory state of any
replica

• single: The local in-memory state of any replica
which thinks it’s a primary

• majority: Values safely committed to disk on a
majority of replicas

Outdated and single are, I believe, equivalent in
terms of safety guarantees, though outdated will
likely exhibit read anomalies constantly, where single
should only show dirty or stale reads during fail-
ures. Outdated can improve availability, latency and
throughput, because all replicas can serve reads, not
just primaries. Majority is much stronger, offer-
ing linearizable reads, but at the cost of a special
sync request to every replica, to which a majority
must respond before the read can be returned to the
client. The sync requests could be omitted, piggyback-
ing leader state on existing write traffic, but any lin-
earizable op must still incur an additional round-trip’s
worth of latency to ensure consensus.

So, how do these features interact? My interpretation,
conferring with the Rethink team, is:

w=single w=majority

r=outdated Lost updates, dirty reads, stale reads Dirty reads, stale reads

r=single Lost updates, dirty reads, stale reads Dirty reads, stale reads

r=majority Lost updates, stale reads Linearizable

Rethink’s documentation claims that majority/majority
guarantees linearizability. The other cases are a little
trickier.

If writes are relaxed to single, we could see a situa-
tion where an isolated primary accepts a write which
is later lost, because it has not been acknowledged by
a majority of nodes. Subsequently, a disjoint majority
of replicas can service reads of an earlier value: a stale

read. A read against that isolated primary could not,
however, succeed with r=majority, likely preventing
dirty reads.

If writes are performed at majority, we prevent lost
updates—because any write must be acknowledged by
a majority of nodes, and therefore be present on any
subsequently elected primary. Stale reads are still
possible at r=single, because an isolated primary (or

2

https://aphyr.com/posts/313-strong-consistency-models
https://rethinkdb.com/docs/consistency/#settings
https://www.rethinkdb.com/api/javascript/run/
http://www.postgresql.org/docs/current/static/wal-reliability.html
http://docs.basho.com/riak/latest/dev/advanced/strong-consistency/#Creating-Consistent-Bucket-Types
http://research.microsoft.com/en-us/um/people/lamport/pubs/lower-bound.pdf
http://rethinkdb.com/docs/consistency/#linearizability-and-atomicity-guarantees


any node, for r=outdated) could serve read requests,
while a newer primary accepts writes. We could also
encounter dirty reads: a single or outdated read
could see a majoritywrite while it’s being propagated
to other replicas, but before those replicas have re-
sponded. If the primary does not receive acknowledge-
ment from a majority of replicas, and a new primary
is elected without that write, the write would have
failed—yet still have been visible to a client.

Finally, single writes and single reads should allow
all anomalies we discussed above: lost updates from
the lack of majority writes, plus dirty and stale reads.

So, the question becomes: does RethinkDB truly offer
linearizable operations at majority/majority? Are
writes still safe with single reads? Are these anoma-
lies purely theoretical, or observable in practice? Let’s
write a test to find out.

2.1 Setup

Installation for Rethink is fairly straightforward.
We simply add their debian repository, install the
rethinkdb package, and set up a log file. To prevent
RethinkDB from exploiting synchronized clocks, we’ll
use a libfaketime shim to skew clocks and run time at
a different rate for each process.

We construct a configuration file based on the stock con-
fig. We want to create as many leadership transitions
as possible in a short time, so we lower the heartbeat
timeout to two seconds once the cluster is up and run-
ning.

We tell Jepsen how to install, configure, and start each
node, how to clear the logs and data files between runs,
and what logfiles to snarf at the end of each test. Af-
ter starting the DB, we spin awaiting a connection to
each node. Jepsen ensures that every node reaches
this point before beginning the test.

2.2 Operations

With the database installed, we turn to test seman-
tics. Clients in Jepsen take invocation operations, ap-
ply those ops to the system under test, and return cor-
responding completion operations. Our operations will
consist of writes, reads, and compare-and-sets (“cas”,
for short). We define generator functions that construct
these operations over small integers.

(defn w [_ _] {:type :invoke, :f :write,
:value (rand-int 5)})

(defn r [_ _] {:type :invoke, :f :read})
(defn cas [_ _] {:type :invoke, :f :cas,

:value [(rand-int 5)
(rand-int 5)]})

For instance, we might generate a write like {:type
:invoke, :f :write, :value 2}, or a compare-and-
set like {:type :invoke, :f :cas, :value [2 4]},
whichmeans “set the value to 4 if, and only if, the value
is currently 2.”

In prior Jepsen analyses, we’d operate on a single key
throughout throughout the entire test, which is sim-
ple, but comes at a cost. As the test proceeds and
Bad Things(TM) happen to the database, more and
more processes will time out or crash. We cannot tell
whether a crashed process’s operations will take place
now, or in five years, which means as the test goes on,
the number of concurrent operations gradually rises.
The number of orders for those operations rises expo-
nentially: at every juncture, we must take all permuta-
tions of every possible subset of pending ops. Anymore
than a handful of crashed processes, and linearizabil-
ity verification can take years.

This places practical limits on the duration and re-
quest rate of a linearizability test, which makes it
harder to detect anomalies. We need a better strategy.

I redesigned the Knossos linearizability checker based
on the linear algorithm described by Gavin Lowe. Ex-
tensive profiling and optimization work led to signifi-
cant speedups for pathological histories that the orig-
inal Knossos algorithm choked on. This implementa-
tion performs the just-in-time linearization partial or-
der reduction proposed by Lowe, with additional opti-
mizations: we precompute the entire state space for
the model, which allows us to explore configurations
without actually calling the model transition code, or
allocating new objects. Because we re-use the same
model objects, we can precompute their hashcodes
and use reference equality for comparisons—which
removes the need for Lowe’s union-find optimization.
Most importantly, determinism allows us to skip the
exploration of equivalent configurations, which dra-
matically prunes the search space.

Unfortunately, these optimizations were not enough:
tests of longer than ~100 seconds would bring the
checker to its knees. Peter Alvaro suggested a key in-
sight: we may not need to analyze a single register
over the lifespan of the whole test. If linearizability
violations occur on short timescales, we can operate
over several distinct keys and analyze each one inde-
pendently. Each key’s history is short enough to an-
alyze, while the test as a whole encompasses tens to

3

https://github.com/aphyr/jepsen/blob/6cf557af4f0acf3fce6efd961877e3d100f9a9c3/rethinkdb/src/jepsen/rethinkdb.clj#L49-L62
https://github.com/aphyr/jepsen/blob/6cf557af4f0acf3fce6efd961877e3d100f9a9c3/rethinkdb/src/jepsen/rethinkdb.clj#L30-L47
https://github.com/aphyr/jepsen/blob/6cf557af4f0acf3fce6efd961877e3d100f9a9c3/rethinkdb/src/jepsen/rethinkdb.clj#L64-L82
https://github.com/aphyr/jepsen/blob/6cf557af4f0acf3fce6efd961877e3d100f9a9c3/rethinkdb/resources/jepsen.conf
https://github.com/aphyr/jepsen/blob/6cf557af4f0acf3fce6efd961877e3d100f9a9c3/rethinkdb/resources/jepsen.conf
https://github.com/aphyr/jepsen/blob/6cf557af4f0acf3fce6efd961877e3d100f9a9c3/rethinkdb/src/jepsen/rethinkdb/document_cas.clj#L42-L48
https://github.com/aphyr/jepsen/blob/6cf557af4f0acf3fce6efd961877e3d100f9a9c3/rethinkdb/src/jepsen/rethinkdb/document_cas.clj#L42-L48
https://github.com/aphyr/jepsen/blob/6cf557af4f0acf3fce6efd961877e3d100f9a9c3/rethinkdb/src/jepsen/rethinkdb.clj#L112-L132
https://github.com/aphyr/jepsen/blob/6cf557af4f0acf3fce6efd961877e3d100f9a9c3/rethinkdb/src/jepsen/rethinkdb.clj#L97-L102
https://github.com/aphyr/jepsen/blob/6cf557af4f0acf3fce6efd961877e3d100f9a9c3/rethinkdb/src/jepsen/rethinkdb/document_cas.clj#L122-L124
https://github.com/aphyr/knossos/blob/master/src/knossos/linear.clj
http://www.cs.ox.ac.uk/people/gavin.lowe/LinearizabiltyTesting/paper.pdf
https://github.com/aphyr/knossos/blob/master/src/knossos/model/memo.clj
https://github.com/aphyr/knossos/blob/master/src/knossos/model/memo.clj#L135-L136
https://github.com/aphyr/knossos/blob/master/src/knossos/linear.clj#L73-L77
https://github.com/aphyr/knossos/blob/master/src/knossos/linear.clj#L73-L77


hundreds of times more operations—each one a chance
for the system to fail.

A new namespace, jepsen.independent, supports these
kinds of analyses. We can lift operations on a single
key, like {:f :write, :value 3} to operations on
[key value] tuples, e.g., to write 3 to key 1, we’d in-

voke {:f :write, :value [1 3]}. We use sequential-
generator to construct operations over integer keys,
and for each key, emitting a mix of reads, writes, and
compare-and-set operations, one per second, for sixty
seconds. Then sequential-generator begins anew
with the next key.

:concurrency 10
:generator (std-gen (independent/sequential-generator

(range)
(fn [k]

(->> (gen/reserve 5 (gen/mix [w cas])
r)

(gen/delay 1)
(gen/limit 60)))))

gen/reserve assigns five of our ten processes to (gen/mix [w cas]): a random mixture of write and compare-
and-set operations. The remaining processes perform reads.

reserve is critical for identifying dirty and stale reads. When we partition the network, updates can stall for
5-10 seconds because a majority is no longer available. If we don’t reserve specific processes for reads, every
process would (at some point) attempt a write, block on leader election, and for a brief window no operations
would take place—effectively blinding the test to consistency violations. By dedicating some processes to reads,
we can detect transient read anomalies through these transitions.

2.3 Writing a client

With our operations constructed, we need a client which takes these operations and performs them against a
RethinkDB cluster. At startup, one client creates a fresh table for the test, with five replicas—one for each node.
We tell Rethink to use a particular write-acks level for the table, and establish a replica on each node. Once the
table is configured, we wait for our changes to propagate.

In response to operations, we extract the [key, value] tuple from the operation, and construct a Rethink
query fragment for fetching that key, using the specified read-mode. Then we dispatch based on the type of the
operation. Reads simply run a get query, extracting a single field val from the document. We return the read
value as the :value for the completion op.

:read (assoc op
:type :ok
:value (independent/tuple

id
(r/run (term :DEFAULT

[(r/get-field row "val") nil])
(:conn this))))

Writes behave similarly: we perform an upsert using conflict: update, setting the val field to the write op’s
value.

:write (do (run! (r/insert (r/table (r/db db) tbl)
{:id id, :val value}
{"conflict" "update"})

(:conn this))
(assoc op :type :ok))

4

https://github.com/aphyr/jepsen/blob/6cf557af4f0acf3fce6efd961877e3d100f9a9c3/jepsen/src/jepsen/independent.clj
https://github.com/aphyr/jepsen/blob/6cf557af4f0acf3fce6efd961877e3d100f9a9c3/rethinkdb/src/jepsen/rethinkdb/document_cas.clj#L133-L139
https://github.com/aphyr/jepsen/blob/6cf557af4f0acf3fce6efd961877e3d100f9a9c3/rethinkdb/src/jepsen/rethinkdb/document_cas.clj#L133-L139
https://github.com/aphyr/jepsen/blob/6cf557af4f0acf3fce6efd961877e3d100f9a9c3/rethinkdb/src/jepsen/rethinkdb/document_cas.clj#L136-L137
https://github.com/aphyr/jepsen/blob/6cf557af4f0acf3fce6efd961877e3d100f9a9c3/rethinkdb/src/jepsen/rethinkdb/document_cas.clj#L63-L71
https://github.com/aphyr/jepsen/blob/6cf557af4f0acf3fce6efd961877e3d100f9a9c3/rethinkdb/src/jepsen/rethinkdb/document_cas.clj#L30-L40
https://github.com/aphyr/jepsen/blob/6cf557af4f0acf3fce6efd961877e3d100f9a9c3/rethinkdb/src/jepsen/rethinkdb/document_cas.clj#L52-L55
https://github.com/aphyr/jepsen/blob/6cf557af4f0acf3fce6efd961877e3d100f9a9c3/rethinkdb/src/jepsen/rethinkdb/document_cas.clj#L77-L83
https://github.com/aphyr/jepsen/blob/6cf557af4f0acf3fce6efd961877e3d100f9a9c3/rethinkdb/src/jepsen/rethinkdb/document_cas.clj#L85-L91
https://github.com/aphyr/jepsen/blob/6cf557af4f0acf3fce6efd961877e3d100f9a9c3/rethinkdb/src/jepsen/rethinkdb/document_cas.clj#L92-L96


Compare and set takes advantage of Rethink’s functional API: we use update against the row query fragment,
providing a function of the current row which dispatches based on the current value of val. If val is equal
to the compare-and-set predicate value, we update the document to value'. Otherwise, we abort the update.
RethinkDB returns a map with the number of errors and replaced rows, which we use to determine whether
the compare-and-set succeeded.

:cas (let [[value value'] value
res (r/run

(r/update
row
(r/fn [row]

(r/branch
(r/eq (r/get-field row "val") value) ; predicate
{:val value'} ; true branch
(r/error "abort")))) ; false branch

(:conn this))]
(assoc op :type (if (and (= (:errors res) 0)

(= (:replaced res) 1))
:ok
:fail)))))))

While this is more verbose than a native compare-and-
set operator, Rethink’s compositional query language
and first-class support for functions and control flow
primitives allows for fine-grained control over single-
document transformations. Like SQL’s stored proce-
dures, shipping complex logic to the database can im-
prove locality and cut round-trips. The API, AST, and
serialization format are structurally similar to one an-
other, which I prefer to the query-stringmangling ubiq-
uitous in SQL libraries—and it’s relatively easy to
wrap up queries as parameterizable functions. How-
ever, the absence of multi-document concurrency con-
trol prevents Rethink’s query language from reaching
its full potential: we cannot (in general) safely read a
value from one document and use it to update another,
or make two updates and guarantee their simultane-
ous visibility.

Happily, RethinkDB explicitly distinguishes between
failed and indeterminate operations with a dedicated
status code. We use a small macro to trap Rethink’s
exceptions and construct an appropriate completion op-
eration based on whether the request failed (:fail), or
might have failed (:info). Since reads are pure, we can

also consider all read errors outright failures, which
lowers the number of crashed ops and reduces load on
the linearizability checker.

We must also be careful to check the return values for
each write: RethinkDB throws exceptions for catas-
trophic cases, but to allow for partial failures, Re-
think’s client will return maps with error counts in-
stead of throwing for all errors.

2.4 Availability

We’ll run these tests for about 500 seconds, while
cutting the network in half every ten seconds.
Experimentation with partially isolated topologies,
SIGSTOP/SIGCONT, isolating primaries only, etc.
has so far yielded equivalent results to a simple ma-
jority/minority split. Shorter timescales can confuse
RethinkDB for longer periods, as it struggles through
multiple rounds of leader timeout and election, but
it reliably recovers given a stable configuration for
~heartbeat_timeout + 10 seconds, and often faster.

5

https://github.com/aphyr/jepsen/blob/6cf557af4f0acf3fce6efd961877e3d100f9a9c3/rethinkdb/src/jepsen/rethinkdb/document_cas.clj#L97-L110
https://www.rethinkdb.com/docs/introduction-to-reql/
https://github.com/aphyr/jepsen/blob/6cf557af4f0acf3fce6efd961877e3d100f9a9c3/rethinkdb/src/jepsen/rethinkdb.clj#L134-L148
https://github.com/aphyr/jepsen/blob/6cf557af4f0acf3fce6efd961877e3d100f9a9c3/rethinkdb/src/jepsen/rethinkdb.clj#L104-L110
https://github.com/aphyr/jepsen/blob/6cf557af4f0acf3fce6efd961877e3d100f9a9c3/rethinkdb/src/jepsen/rethinkdb.clj#L172-L175


This plot shows the latency of operations over a full 500-second test: blue ops are successful, red definitely
failed, and purple ones might have succeeded or might have failed. Grey regions show when the network was
partitioned. We can see that each partition is accompanied by a brief spike in latency—around 2.5 seconds—
before operations resume as normal.

On a shorter timescale, we can see the recovery behavior in finer detail. Rethink delivers a few transient
failures or crashes for reads, writes, and compare-and-set operations just after a partition begins. After cluster
reconfiguration, we see partial errors for all three classes of operations, until the partition resolves and the
cluster heals. Once it heals, we return to a healthy pattern. Note that compare-and-set (cas) failures are
expected in this workload: they only succeed if they guess the current value correctly.

Why do we see partial failure? Because even though reads and writes only require a single node to acknowledge,
Rethink’s design mandates that those operations take place on a primary node—and even after reconfiguration,
some nodes won’t be able to talk to a primary!

6



We see a similar pattern for majority writes and single reads: because the window for concurrent primaries is
short, there’s not a significant difference in availability or latency.

However, a marked change occurs if we choose majority reads and single writes: read latencies, formerly ~2-3
times lower than writes, jump to the level of writes. This is because Rethink implements majority reads by
issuing an empty write to ensure that the current primary is still legal. Once the old primary steps down,
operations against the minority side fail or crash quickly.

7



The scale is slightly different for this graph of majority/majority, but the numbers are effectively the same.
Majority writes don’t have a significant impact on availability, because even single writes have to talk to a
primary—and in order to have a primary, you need a majority of nodes connected. There should be a difference
in client latency, but this network is fast enough that other costs dominate.

3 Linearizability

So, Rethink fails over reliably within a few seconds of a partition, and offers high availability—though not total
availability. We also suspect that during these transitions, Rethink could exhibit lost updates, dirty reads, and
stale reads, depending on the write_acks and read_mode employed. Only majority/majority should ensure
linearizability.

3.1 Single writes, single reads

Consider this fragment of a history just after the network partitions, using single reads and writes. Each line
shows a process (194) invoking and completing (:ok), crashing (:info), or failing (:fail) an operation. Here
the key being acted on is 15, and we begin by reading the value 0.

9 :ok :read [15 0]
...
194 :invoke :write [15 3]
7 :fail :read [15 nil] "Cannot perform read: lost contact with primary
replica"
292 :info :cas [15 [0 1]] "Cannot perform write: lost contact with primary
replica"
194 :ok :write [15 3]
141 :info :write [15 3] "Cannot perform write: lost contact with primary
replica"
6 :fail :read [15 nil] "Cannot perform read: lost contact with primary
replica"
8 :fail :read [15 nil] "Cannot perform read: lost contact with primary
replica"
373 :info :cas [15 [1 0]] "Cannot perform write: lost contact with primary
replica"

8



5 :invoke :read [15 nil]
5 :ok :read [15 3]
170 :invoke :cas [15 [1 4]]
170 :info :cas [15 [1 4]] "Cannot perform write: The primary replica isn't
connected to a quorum of replicas. The write was not performed."
9 :invoke :read [15 nil]
9 :fail :read [15 nil] "Cannot perform read: The primary replica isn't
connected to a quorum of replicas. The read was not performed, you can do an
outdated read using `read_mode=\"outdated\"`."
7 :invoke :read [15 nil]
302 :invoke :cas [15 [0 0]]
7 :ok :read [15 0]
194 :invoke :cas [15 [3 0]]
302 :fail :cas [15 [0 0]]
194 :info :cas [15 [3 0]] "Cannot perform write: The primary replica isn't
connected to a quorum of replicas. The write was not performed."
151 :invoke :cas [15 [1 0]]
6 :invoke :read [15 nil]
6 :ok :read [15 0]

Did you catch that? I sure didn’t, but luckily computers are good at finding these sorts of errors. Process 194
writes 3, which is read by process 5, and then, for no apparent reason, process 7 reads 0—a value from earlier
in the test. Knossos spots this anomaly, and tells us that somewhere between line 73 (read 3) and line 80 (read
0), it was impossible to find a legal linearization. It also knows exactly what crashed operations were pending
at the time of that illegal read:

:failures
{15
{:valid? false,
:configs
({:model {:value 3},

:pending [{:type :invoke, :f :read, :value 0, :process 7, :index 78}
{:type :invoke, :f :cas, :value [1 4], :process 170, :index 74}
{:type :invoke, :f :cas, :value [1 0], :process 373, :index 48}]}

... a few dozen other configurations
})

:previous-ok {:type :ok, :f :read, :value 3, :process 5, :index 73},
:op {:type :ok, :f :read, :value 0, :process 7, :index 80}}}},

This is still hard to reason about, so I’ve written a renderer to show the failure visually. Time flows from left
to right, and each horizontal track shows the activity of a single process. Horizontal bars show the beginning
and completion of an operation, and the color of a bar shows whether that operation was successful (green) or
crashed (yellow).

If the history is linearizable, we should be able to draw some path which moves strictly to the right, touching
every green operation—and possibly, crashed operations, since theymay have happened. Legal paths are shown
in black, and the resulting states are drawn as vertical lines in that operation. When a transition would be
illegal, its path and state are shown in red. Hovering over any part of a path highlights every path that touches
that component. For clarity, we’ve collapsed most of the equivalent transitions, so you’ll see multiple paths
highlighted at once.

9



Hovering over the top line tells us that we can’t simply read 3 then read 0: there has to be a write in between
in order for the state to change. We have a few crashed operations from earlier in the history that might take
effect during this time—a write of 3 by process 141, and three compare-and-set operations. The write could go
through, as shown by the black line from read 3 to write 3, but that doesn’t help us reach 0. No linearization
exists. Given subsequent reads see 0, and multiple processes attempted to write 3 just prior, I suspect the read
of 3 is either a lost update or a stale read: both expected behaviors for single/single mode.

3.2 Single writes, majority reads

When we use single writes and majority reads, it’s still possible to see lost updates.

{:valid? false,
:previous-ok {:type :ok, :f :write, :value 1, :process 580, :index 181},
:op {:type :ok, :f :read, :value 3, :process 8, :index 200}}}},
:configs

({:model {:value 1},
:pending [{:type :invoke, :f :read, :value 3, :process 8, :index 199}

{:type :invoke, :f :cas, :value [3 4], :process 580, :index 196}
... eighty zillion lines ...]})}

10



In this history, process 580 successfully writes 1, and two subsequent operations complete which require the
value to be 3. None of the crashed operations allow us to reach a state of 3; it’s as if the write of 1 never
happened. This is a lost write, which occurs when a primary acknowledges a write before having fully replicated
it, and a new primary comes to power without having seen the write. To prevent this behavior, we can write
with majority.

3.3 Majority writes, single reads

As expected, we can also find linearization anomalies with majority writes and single reads. Before a parti-
tion begins, this register is 0. We have a few crashed writes of 1, which are visible to processes 5 and 8—then
process 6 reads 0 again. Eliding some operations:

8 :ok :read [10 0]
...
133 :invoke :write [10 1]
131 :invoke :write [10 1]
:nemesis :info :start "Cut off {:n4 #{:n3 :n2 :n5},
:n1 #{:n3 :n2 :n5}, :n3 #{:n4 :n1}, :n2 #{:n4 :n1}, :n5 #{:n4 :n1}}"
5 :invoke :read [10 nil]
5 :ok :read [10 1]
9 :invoke :read [10 nil]
8 :invoke :read [10 nil]
8 :ok :read [10 1]
5 :invoke :read [10 nil]
5 :ok :read [10 1]
8 :invoke :read [10 nil]
8 :ok :read [10 1]
...
5 :invoke :read [10 nil]
5 :ok :read [10 1]
...
6 :invoke :read [10 nil]
141 :invoke :cas [10 [4 0]]
6 :ok :read [10 0]

11



It’s difficult to tell exactly what happened in these
kinds of histories, but I suspect process 131 and/or 133
attempted a write of 1, which became visible on a pri-
mary just before that primary was isolated by a parti-
tion. Those writes crashed because their acknowledge-
ments never arrived, but until the old primary steps
down, other processes on that side of the partition can
continue to read that uncommitted state: a dirty read.
Once the new primary steps up, it lacks the write of 1
and continues with the prior state of 0.

3.3.1 Majority writes, majority reads

I’ve run hundreds of test against RethinkDB at
majority/majority, at various timescales, request
rates, concurrencies, and with different types of fail-
ures. Consistent with the documentation, I have never
found a linearization failure with these settings. If you
use hard durability, majority writes, and majority
reads, single-document ops in RethinkDB appear safe.

3.4 Discussion

As far as I can ascertain, RethinkDB’s safety claims
are accurate. You can lose updates if you write
with anything less than majority, and see assorted
read anomalies with single or outdated reads, but
majority/majority appears linearizable.

Rethink’s defaults prevent lost updates (offering lin-
earizable writes, compare-and-set, etc), but do allow
dirty and stale reads. Inmany cases this is a fine trade-
off to make, and significantly improves read latency.
On the other hand, dirty and stale reads create the
potential for lost updates in non-transactional read-
modify-write cycles. If one, say, renders a web page
for a user based on dirty reads, the user could take ac-
tion based on that invalid view of the world, and cause
invalid data to be written back to the database. Sim-
ilarly, programs which hand off state to one another
through RethinkDB could lose or corrupt state by al-
lowing stale reads. Beware of sidechannels.

Where these anomalies matter, RethinkDB users
should use majority reads. There is no signifi-

12



cant availability impact to choosing majority reads,
though latencies rise significantly. Conversely, if read
availability, latency, or throughput are paramount,
you can use outdated reads with essentially the same
safety guarantees as single—though you’ll likely see
continuous, rather than occasional, read anomalies.

Rethink’s safety documentation is generally of high
quality—the only thing I’d add is a description of the
allowable read anomalies for weaker consistency set-
tings. Most of my feedback for the RethinkDB team
is minor: I’d prefer standardizing on either thrown or
checked errors for all types of operations, instead of a
mix, to prevent cases where users assume exceptions
and forget to check results. Error codes for indetermi-
nate vs definite failures are new in the Clojure client,
and requires knowing some magic constants, but I ap-
preciate their presence nonetheless.

I’ve hesitated to recommend RethinkDB in the past
because prior to 2.1, an operator had to intervene to
handle network or node failures. However, 2.1’s au-
tomatic failover converges reasonably quickly, and its
claimed safety invariants appear to hold under par-
titions. I’m comfortable recommending it for users
seeking a schema-less document store where inter-
document consistency isn’t required. Users might
also consider MongoDB, which recently introduced op-
tions for stronger read consistency similar to Rethink—
the two also offer similar availability properties and
data models. For inter-key consistency, a configura-

tion store like Zookeeper, or a synchronously replicated
SQL database like Postgres might make more sense.
Where availability is paramount, users might consider
an AP document or KV store like Couch, Riak, or Cas-
sandra.

I’ve quite enjoyed working with the Rethink team on
this analysis—they’d outlined possible failure scenar-
ios in advance, helped me refine tests that weren’t ag-
gressive enough, and were generally eager to see their
system put to the test. This sort of research wanders
through all kinds of false starts and dead ends, but Re-
think’s engineers were always patient and supportive
of my experimentation.

You can reproduce these results by setting up your
own Jepsen cluster, checking out the Jepsen repo at
6cf557a, and running lein test in the rethink/ di-
rectory. Jepsen will run tests for all four read/write
combinations and spit out analyses in store/. This
test relies on unreleased features from clj-rethinkdb
0.12.0-SNAPSHOT, which you can build locally by
cloning their repo and running lein install.

This work was funded by RethinkDB, and conducted in
accordance with the Jepsen ethics policy. I am indebted
to Caitie McCaffrey, Coda Hale, Camille Fournier, and
Peter Bailis for their review comments. My thanks as
well to the RethinkDB team, especially Daniel Mewes,
Tim Maxwell, Jeroen Habraken, Michael Lucy, and
Slava Akhmechet.

13

https://github.com/aphyr/jepsen/blob/master/README.md
https://github.com/aphyr/jepsen/blob/master/README.md
https://github.com/apa512/clj-rethinkdb
http://jepsen.io/ethics.html

	Background
	Consistency guarantees
	Setup
	Operations
	Writing a client
	Availability

	Linearizability
	Single writes, single reads
	Single writes, majority reads
	Majority writes, single reads
	Majority writes, majority reads

	Discussion


