Scylla 4.2-rc3

Kyle Kingsbury
2020-12-23

JEPSEN

Scylla is a distributed database patterned after Apache Cassandra. We evaluated the community edition of Scylla
4.2-re3, and found that both LWT and normal operations failed to meet claimed guarantees: LWT exhibited split-
brain in healthy clusters, and non-LWT operations were not isolated as claimed. The split-brain issue was fixed
in 4.2, and Scylla’s documentation no longer claims non-LWT operations are isolated. In addition, we observed
split-brain with LWT after membership changes (partially resolved), aborted reads with LWT (fixed in 4.2.1), and
missing rows in response to LWT batch statements (fixed in 4.3.rc1). Scylla still exhibits split-brain, but in our
testing, this was limited to membership changes concurrent with other faults. Scylla has a complementary blog
post, and these findings will also be presented at Scylla Summit 2021. This work was funded by ScyllaDB, and

conducted in accordance with the Jepsen ethics policy.

1 Background

Scylla is a distributed wide-column'® database which
originated as a C++ port of Cassandra, aiming for im-
proved performance. It supports both Cassandra- and
DynamoDB-compatible APIs, and is intended for high-
throughput, low-latency workloads, including analyt-
ics, messaging, and other time-series data.

Scylla organizes data into keyspaces, which contain ta-
bles, which contain rows. Rows are uniquely identified
by a primary key. Each row is physically a sorted se-
ries of (key, value, timestamp) triples called cells, but
conceptually, a Scylla row is a map of column names to
values. Those values may be primitives (e.g. strings, in-
tegers, booleans, dates), counters, or collections, such
as maps, lists, or sets. Collections are internally stored
using multiple cells. Rows are grouped into partitions
by a partition key, and those partitions are assigned
via a Dynamo-style hash ring to a subset of nodes in
the cluster. Each partition is replicated across multi-
ple nodes for redundancy.

Like Cassandra, Scylla generally allows clients to
write to any node at any time—even when nodes are
crashed or partitioned away. Whether a write is
durable depends on whether it reaches a node which
can store that row; whether a write is acknowledged to

the client depends on whether enough nodes respond to
satisfy the client’s requested consistency level. Writes
are isolated, Scylla claimed, so long as they take place
within a single partition:

In an UPDATE statement, all updates
within the same partition key are applied
atomically and in isolation.

When there are multiple writes to a single cell, Scylla
resolves them using last-write-wins (LWW): values
with newer timestamps replace those with older ones.
In the event of a timestamp collision, the lexicographi-
cally higher value wins.

Last-write-wins implies the potential for lost updates:
if a client reads some value v, then writes back v», it
is possible that a concurrent update could also observe
v1 and write vs, overwriting vo. The update of vs is ef-
fectively lost. To avoid this problem, Scylla users can
structure their updates as unique inserts, taking ad-
vantage of Scylla’s wide rows to store each change as
a distinct column in the row. Clients can then merge
those columns together on read to recover an effective
value.

This approach requires that operations commute:
writes should be able to take effect in either order. For
non-commutative operations, Scylla (like Cassandra),

IThere has historically been some confusion on this point. Row-oriented databases group data for each row together, whereas column-
oriented databases group data for each column together. Both Cassandra and Scylla are row stores, but where Cassandra describes itself
as a row store, Scylla described itself as a column store. We call both databases wide-column stores, which refers to the fact that they can
store a variable number of columns per row. Scylla has updated their marketing materials to use this language as well.

https://www.scylladb.com/
https://cassandra.apache.org/
https://www.scylladb.com/2020/12/23/jepsen-and-scylla-putting-consistency-to-the-test
https://www.scylladb.com/2020/12/23/jepsen-and-scylla-putting-consistency-to-the-test
https://www.scylladb.com/scylla-summit-2021/?utm_channel=Virtual-Event&utm_source=Speaker&utm_medium=KK&utm_campaign=Scylla-Summit-2021
https://jepsen.io/ethics.html
https://aws.amazon.com/dynamodb/
https://docs.scylladb.com/getting-started/types/#native-types
https://docs.scylladb.com/getting-started/types/#counters
https://docs.scylladb.com/getting-started/types/#collections
https://docs.scylladb.com/architecture/ringarchitecture/
https://docs.scylladb.com/getting-started/dml/
https://aphyr.com/posts/294-jepsen-cassandra
https://github.com/apache/cassandra#apache-cassandra
https://github.com/apache/cassandra#apache-cassandra
https://www.scylladb.com/product/
https://db-engines.com/en/article/Wide+Column+Stores

offers linearizable updates via lightweight transactions
(LWTs). LWTs allow a single Cassandra operation to
proceed only if a predicate holds. They do not offer ar-
bitrary sessions or sequences of multiple operations in
a single transaction. While this prevents transactions
from mixing reads and writes, a single transactional
select can read multiple rows, and a single batch can in-
sert, update, or delete multiple rows. Both of these con-
structs are limited to a single partition, which means
that an all-LWT history over a single partition should
be strict serializable.

Both Scylla and Cassandra use a Paxos-based con-
sensus algorithm for these transactions, but where
Cassandra requires four round trips per transaction,
Scylla requires only three. Other consensus algo-
rithms, such as Raft, can achieve consensus in one
round trip, which is why Scylla is laying the ground-
work for a Raft-based LWT implementation.

2 Test Design

Scylla had an existing Jepsen test suite adapted from
Cassandra’s Jepsen tests. We reviewed and signif-
icantly expanded this test suite for Scylla 4.2-rc3
through 4.2.rc5, including the creation of new, more
aggressive workloads and more sophisticated nemeses
for fault injection. Our new tests ran on clusters of five
Debian Buster nodes, deployed in LXC, Docker, and
EC2.

We made several tuning changes to Scylla’s default
configuration to speed up testing. By default, Scylla
takes over a minute to detect a node failure, and
300 seconds to recover from a process crash, due to
a temporary deadlock involved in gossip on boot. We
lowered phi_convict_threshold, ring_delay_ms,
shadow_round_ms, and adjusted other settings to re-
duce startup and recovery times.

During these tests, we injected a variety of faults,
including network partitions, process kills, process
pauses, clock skew, and membership changes, includ-
ing adding, repairing, decommissioning, and forcibly
removing nodes. In addition, we measured behavior
both with and without custom timestamp generators
which introduced synthetic clock skew and increased
the probability of timestamp collisions.

2.1 Workloads

Scylla’s original test suite included workloads for CQL
(Cassandra Query Language) maps and sets, both of
which insert several elements with consistency ONE
into a single collection, and attempt to read them back

with a final read at consistency ALL. The batch work-
load inserts pairs of rows together, and attempts to
read back both rows. A counter workload creates a
single CQL counter and attempts to increment it re-
peatedly. Reads verify that the counter value remains
within expected ranges. A dedicated materialized-view
workload updates map values and queries a material-
ized view to see if those changes are reflected.

While we briefly evaluated these workloads, the
present work focused on Scylla’s lightweight transac-
tion safety. To verify LWT safety, we used three work-
loads.

The first, cas-register, uses LWT to perform reads,
writes, and compare-and-set operations over several
rows. It uses Knossos to verify that the history of oper-
ations over each individual row is linearizable. Knos-
sos is exponential with respect to concurrency, and
concurrency (thanks to indeterminate responses) rises
rapidly in Jepsen testing. This limits the length of his-
tories to a few hundred operations per row.

To complement the Knossos checker, we designed list-
append and wr-register workloads, both of which use
Elle to search for violations of strict serializability.
Elle uses knowledge of the history and data structures
involved to infer constraints on the order of versions
of each individual key, and the order of transactions
over those keys. Cycles in these constraint graphs cor-
respond to isolation anomalies. The list-append test
performs transactions which append unique integers
to CQL lists, and reads those lists by primary key,
whereas the wr-register test writes unique integers to
individual rows, rather than CQL collections.

Both workloads perform LWT transactions composed
of a single SELECT or BATCH update. Scylla prohibits
mixing reads and writes in a single query, as well
as queries which read multiple rows with CQL collec-
tions, and LWT queries that cross partition boundaries.
Even with these restrictions we are able to verify single
key linearizability, as well as limited multi-key strict
serializability within a single partition.

We also designed a variety of special-purpose work-
loads to investigate anomalous behavior. Batch-return
examines the rows returned in response to LWT
batches. This test verifies that returned rows cor-
respond to requested updates in each batch. Write-
isolation performs non-LWT writes to multiple cells,
and performs concurrent reads, looking for cases
where only some values came from the same write: ev-
idence of read skew.

https://jepsen.io/consistency/models/linearizable
https://docs.scylladb.com/using-scylla/lwt/
https://docs.scylladb.com/getting-started/dml/#select-statement
https://docs.scylladb.com/getting-started/dml/#batch-statement
https://jepsen.io/consistency/models/strict-serializable
https://docs.datastax.com/en/cassandra-oss/3.0/cassandra/dml/dmlLtwtTransactions.html
https://www.scylladb.com/2020/07/15/getting-the-most-out-of-lightweight-transactions-in-scylla/
https://github.com/scylladb/jepsen/tree/0e1544d33af6bb164415a3912831b78e56809971
https://github.com/jepsen-io/scylla/tree/0fbf866f24e9d98553c4021a64d3f448147585a1
https://github.com/jepsen-io/scylla/tree/0fbf866f24e9d98553c4021a64d3f448147585a1
https://github.com/jepsen-io/scylla/blob/0fbf866f24e9d98553c4021a64d3f448147585a1/resources/scylla.yaml#L502-L508
https://github.com/jepsen-io/scylla/blob/0fbf866f24e9d98553c4021a64d3f448147585a1/src/scylla/nemesis.clj#L393-L409
https://github.com/jepsen-io/scylla/blob/0fbf866f24e9d98553c4021a64d3f448147585a1/src/scylla/collections/map.clj
https://github.com/jepsen-io/scylla/blob/0fbf866f24e9d98553c4021a64d3f448147585a1/src/scylla/collections/set.clj
https://github.com/jepsen-io/scylla/blob/0fbf866f24e9d98553c4021a64d3f448147585a1/src/scylla/batch.clj
https://github.com/jepsen-io/scylla/blob/0fbf866f24e9d98553c4021a64d3f448147585a1/src/scylla/counter.clj
https://github.com/jepsen-io/scylla/blob/0fbf866f24e9d98553c4021a64d3f448147585a1/src/scylla/mv.clj
https://github.com/jepsen-io/scylla/blob/0fbf866f24e9d98553c4021a64d3f448147585a1/src/scylla/mv.clj
https://github.com/jepsen-io/scylla/blob/0fbf866f24e9d98553c4021a64d3f448147585a1/src/scylla/cas_register.clj#L22-L85
https://github.com/jepsen-io/knossos
https://jepsen.io/consistency/models/linearizable
https://github.com/jepsen-io/scylla/blob/0fbf866f24e9d98553c4021a64d3f448147585a1/src/scylla/list_append.clj
https://github.com/jepsen-io/scylla/blob/0fbf866f24e9d98553c4021a64d3f448147585a1/src/scylla/list_append.clj
https://github.com/jepsen-io/scylla/blob/0fbf866f24e9d98553c4021a64d3f448147585a1/src/scylla/wr_register.clj
https://github.com/jepsen-io/elle
https://jepsen.io/consistency/models/strict-serializable
https://jepsen.io/consistency/models/strict-serializable
https://github.com/jepsen-io/scylla/blob/0fbf866f24e9d98553c4021a64d3f448147585a1/src/scylla/batch_return.clj
https://github.com/jepsen-io/scylla/blob/0fbf866f24e9d98553c4021a64d3f448147585a1/src/scylla/write_isolation.clj
https://github.com/jepsen-io/scylla/blob/0fbf866f24e9d98553c4021a64d3f448147585a1/src/scylla/write_isolation.clj

3 Results

Our testing focused on lightweight transaction safety,
but along the way we uncovered some additional be-
haviors in non-LWT operations. We’ll start by dis-
cussing some minor issues around timestamps, batch
returns, and non-LWT isolation, then cover stale reads
and split-brain in lightweight transactions.

3.1 Destructive INSERTSs

We uncovered an unusual behavior with Scylla’s exist-
ing tests for CQL sets and maps: when we tested with
imperfect timestamps, they appeared to lose acknowl-
edged inserts. Higher degrees of clock skew resulted
in more writes lost, but even skews as small as one sec-
ond resulted in lost updates. This behavior was partic-
ularly surprising because distinct set and map inserts
should commute. In other words, adding a then b to a
set ought to be the same as adding b then a.

This behavior turned out rot to be a bug; it is, in fact,
documented behavior. To understand why, we have to
look at the transactions performed during the set (or
map) workload. They begin by creating a table with a
set (map) column, and inserting a single row:

CREATE TABLE sets (
id int PRIMARY KEY,
value set<int>

)

INSERT INTO sets (id, value)
VALUES (0, {});

After creating this empty set, clients perform updates:
each adding a unique element to the set. For example:

UPDATE sets SET

value = value + {1} WHERE id = 0;

These UPDATE statements all commute with one an-
other, but the INSERT and UPDATE do not. If the INSERT
receives a higher timestamp than an UPDATE it will
silently negate that update’s writes—regardless of the
real-time order. This is surprising for three reasons.

First, database users often assume linearizability im-
plicitly: if the INSERT completes, an UPDATE begun af-
ter that completion should take effect later. This is
true for LWT, but not for normal Scylla operations.
Users accustomed to Scylla (or other Cassandra-style
databases) are likely aware of this behavior, and in-
stead might ask what consistency level was involved
in these operations, since they could have taken place
on disjoint nodes. This is a red herring: the behavior
is a consequence of last-write-wins timestamp arbitra-
tion, and choosing consistency level QUORUM or ALL does

nothing to prevent it.

Second, INSERT and UPDATE in CQL have different se-
mantics than in most query languages. In SQL for ex-
ample, INSERT creates a new row and UPDATE alters
an existing row. A successful INSERT and UPDATE pair
in SQL can only execute in one order: the INSERT must
have taken place before the UPDATE, because otherwise
the UPDATE would have had no row to modify. By con-
trast, CQL’s INSERT and UPDATE are (almost) indistin-
guishable: both mean “upsert”. UPDATE statements
create new rows when none exist, and INSERT state-
ments can succeed even when every replica already
has data for the row being “inserted”; it overwrites any
cells with a lower timestamp.

Third, users accustomed to working with CRDT's might
expect that CQL sets are something like an OR-set or
G-set: sets which can always safely add elements but
where concurrent removals might be dropped. Insert-
ing a value of {} would be safe in these cases: one
might expect the insert to be a no-op (essentially, an
addition of no elements), or to delete causally prior val-
ues, but not to delete causally concurrent or later val-
ues. Scylla, like Cassandra, does not do either of these
things. Insert is a destructive operation by design. In
fact, writing any collection literal (e.g. {} or (1, 2))
is internally implemented by writing a deletion tomb-
stone followed by the new values.

This behavior is somewhat documented. For example,
the insert documentation states:

Note that unlike in SQL, INSERT does not
check the prior existence of the row by de-
fault: the row is created if none existed be-
fore, and updated otherwise. Furthermore,
there is no means to know which of cre-
ation or update happened.

Likewise for UPDATE. While the Cassandra set docu-
mentation shows an INSERT followed by an UPDATE
as if the two should happen in order, and the Scylla
datatypes documentation does too, neither of these ex-
amples explicitly claims that that order is guaranteed,
rather than likely. In general, operations in Scylla
and Cassandra should be expected to (occasionally)
take place in arbitrary orders. Similarly, the names
of INSERT and UPDATE are suggestive but not defini-
tive: since UPDATE ... SET value = {} can destroy
information, and UPDATE and INSERT are effectively
the same operation, INSERT can destroy information
too.

If you were surprised by this, you're not alone. The
Cassandra engineers who originally designed this test
didn’t realize INSERT ... {} was unsafe. This work-

https://github.com/scylladb/scylla/issues/7082
https://github.com/scylladb/scylla/issues/7082
https://crdt.tech/
https://arxiv.org/pdf/1806.10254.pdf
https://arxiv.org/pdf/1806.10254.pdf
https://docs.scylladb.com/getting-started/dml/#insert-statement
https://docs.datastax.com/en/cql-oss/3.3/cql/cql_using/useInsertSet.html
https://docs.datastax.com/en/cql-oss/3.3/cql/cql_using/useInsertSet.html
https://docs.scylladb.com/getting-started/types/#sets
https://docs.scylladb.com/getting-started/types/#sets
https://github.com/riptano/jepsen/blob/a8dadd63dc6a58e46d9fbed3a583bbc7544e4e19/cassandra/src/cassandra/collections/map.clj#L54-L56

load was ported to Scylla by Scylla engineers, reviewed
by Jepsen, and reviewed again by multiple Scylla engi-
neers before one realized the mistake. Jepsen posted
an informal survey which asked CQL users what they’d
expect to happen in this scenario, and out of eleven re-
sponses, no one correctly predicted this outcome.?

Users may be able to work around this by only perform-
ing (commutative) UPDATE operations, without initial
INSERTs. Scylla’s documentation no longer claims that
non-LWT operations are isolated, explains timestamp
conflict behavior, and mentions that inserts of empty
maps are the same as deletions.

3.2 Aborted LWT Reads

Infrequently, under network partitions and pro-
cess crashes, LWT writes to Scylla could appear
to fail, but actually succeed. In particular, the er-
ror message UnavailableException: Not enough
replicas available for query at consistency
QUORUM should denote the operation definitely did not
take place, but those operations may in fact be visible
to later reads. For example, in this list-append test, a
failed append of 52 to key 618 was observed by a later
read:

759 :fail :txn [[:append 629 127]
[:append 618 52]1]

648 :ok stxn [[:r 618 [50 52 69 741]]

If we take this exception to mean the append of 52 did

not commit, then this pair of operations constitutes an
aborted read! But how should we interpret this error?

As of September 29, 2020, ScyllaDB’s documentation
did not appear to include any description of what er-
ror messages mean, or whether their results were def-
inite. Datastax’s Java client documentation describes
this error as an “[e]xception thrown when the coordina-
tor knows there is not enough replicas alive to perform
a query with the requested consistency level,” which
the Cassandra error docs confirm. The Cassandra di-
agram’s documentation shows that a coordinator re-
turns an UnavailableException when no communi-
cation with replicas has taken place—whereas other
exceptions, like WriteTimeout, are thrown when a co-
ordinator has issued requests to a replica.

Users might reasonably conclude that an
UnavailableException denotes a definite failure.
This is not the case: Scylla (unlike Cassandra) checks
availability multiple times during the LWT pro-

cess. It can therefore throw UnavailableException
in scenarios where requests have already been is-
sued. Scylla 4.3.rc1 addresses this issue by returning
WriteTimeout.

3.3 Weird Return Values From Batch Updates
#7113

Many query languages include some notion of a batch
transaction: a statement which executes multiple sub-
statements together, and returns the results of their
application. In Scylla, we might perform an LWT
BATCH statement like so:

BEGIN BATCH
UPDATE batch_ret SET a = 3

WHERE key = 1 IF lwt_trivial = null;
UPDATE batch_ret SET b = 5
WHERE key = 2 IF lwt_trivial = null;

APPLY BATCH;

The IF condition signifies that these updates should
take place using LWT. Conditionals are mandatory in
CQL; we use lwt_trivial (a column defined in our
schema, but whose value is always null) to allow these
updates to always succeed.

Individual LWT UPDATE statements return a single
row with an [applied] field, as well as the prior value
for that row’s key and any fields used in the LWT condi-
tional. The return value of batch was undocumented,
but one might expect it to be a series of rows corre-
sponding to the results of each statement in the batch.
Indeed, this is sometimes the case:

({:[applied] true, :key 1, :lwt_trivial nil}
{:[applied] true, :key 2, :lwt_trivial nil})

... but sometimes not:

({: [applied] true, :key 2, :lwt_trivial nil}
{:[applied] true, :key 1, :lwt_trivial nil})

In practice, UPDATE’s return values were ordered by
clustering key, rather than the order they were writ-
ten in the BATCH statement. This, combined with the
fact that update returns the prior values of LWT keys
(which may have been null!), meant that it was (in gen-
eral) impossible to figure out which returned row cor-
responded to which UPDATE statement. Two updates
could return a single row, like so:

({: [applied] true,
:key null,
:lwt_trivial nil})

2 After asking respondents what they thought might happen, we explained the actual behavior and asked users how they felt. Responses
included “Surprising”, “That feels broken”, “[N]ot what I expected”, “[Jlust wrong”, “This looks quite unsafe”, and “I feel bad”.

https://docs.google.com/forms/d/1jIS0lXG8Nj_5D66-uM8h3mjoQ4QEoLGsF7xzaFHy63M/edit
https://github.com/scylladb/scylla-docs/pull/3150/files
https://github.com/scylladb/scylla/issues/7258
https://github.com/scylladb/scylla/issues/7258
https://github.com/scylladb/scylla/files/5245819/20200916T205014.000-0400.zip
http://pmg.csail.mit.edu/papers/icde00.pdf
https://docs.datastax.com/en/drivers/java/3.6/com/datastax/driver/core/exceptions/UnavailableException.html
https://docs.datastax.com/en/devapp/doc/devapp/driversServerErrors.html
https://docs.scylladb.com/getting-started/dml/#batch-statement
https://docs.scylladb.com/getting-started/dml/#batch-statement

The Scylla team confirmed this was expected behavior.
However, we also observed rows which were missing
altogether. Here, a BATCH which updated keys 1 and 2
returned a result set without any value for key 2:

{:[applied] true, :key 1, :lwt_trivial nil})

This was in fact a bug, caused by Scylla sometimes
(but not always!) stripping out result rows which had
a nil prior key. Scylla resolved the problem by re-
turning batch results in statement order, which allows
clients to predictably identify which result corresponds
to which update, and has documented the behavior.

3.4 Normal Writes Are Not Isolated

Scylla’s DML documentation made repeated claims
that INSERT, UPDATE, DELETE, and BATCH are
all isolated (at least, when limited to a single parti-
tion). This is not the case: clients which e.g. only add
elements to a single CQL set could observe states like
{1} and {2}. Such a history cannot be understood to
be isolated, in the usual sense, because there is no to-
tal order of operations which could result in both val-
ues. The existence of the state {1} implies that the
addition of 2 must have followed 1, but the existence of
{2} implies that the addition of 1 must have followed
2. Non-LWT updates to collections and counters are
fundamentally concurrent.

This problem is not limited to partial updates—writes
which completely replace the value of some column are
not isolated either. We repeatedly observed isolation
violations both in batch and single-row updates. In the
write-isolation test, we perform write operations
which set every value in a group of keys to either +x
or -x. Any read of that group should see that every
key has the same absolute value. Instead, we observed
transactions like:

[[:r 4 -5] [:r 3 -2] [:r 5 -3]]

Here, key 4’s value is -5, key 3’s value is -
2, and key 5’s value is -3: values from three
completely separate writes have been jumbled to-
gether. This problem occurs in healthy clusters,
even with consistency level ALL for reads and
writes, and when using the standard Scylla client’s
AtomicMonotonicTimestampGenerator. At a thou-
sand operations per second (evenly split between reads
and writes), we observed isolation violations roughly
every 20 seconds. By quantizing timestamps, we could
induce anomalies in just a handful of writes.

The author first reported this problem with Cassan-
dra in 2013. In 2014, Cassandra realized that their
read-repair mechanism could also violate partition-

level isolation, and decided not to address the problem
at that time. Scylla’s engineers reported these prob-
lems again, including additional cases where Cassan-
dra could fail to meet its claimed isolation guarantees,
in 2017. As of September 2020, providing row-level
isolation in the face of timestamp collision remains an
open issue in Cassandra, the documentation ticket is
unaddressed, and Cassandra’s documentation still in-
sists that writes are “performed with full row-level iso-
lation.” This problem continues to vex users, who occa-
sionally discover this behavior when it results in logical
data corruption.

Some engineers have argued that this behavior is still
isolated: it’s simply that writes in systems like Scylla
and Cassandra don’t mean what most people think of
as a write. If a write is understood to mean “maybe set
the value for this cell, depending on whether and how
other people have already or will, at some future time,
write to it” then this behavior can indeed be isolated.
It’s just that Scylla is exercising its freedom to do what-
ever it wants with one’s writes. The problem, of course,
is that if one actually wants to definitely write a value,
there is no timestamp one can choose which cannot be
ruined by some other client. Every client must care-
fully coordinate their timestamp choices. Avoiding the
need for careful client coordination is precisely why one
wants an isolation property in the first place! Whether
users are generally aware of this nondeterministic in-
terpretation, and whether it is possible to write the
kinds of applications which users want to write using
“row-level isolation”, remain under debate.

Scylla is already aware of these issues—tickets like
2379 discuss various cases where partition-level isola-
tion fail to hold. However, Scylla’s documentation still
contained strong isolation claims. We have opened an
issue to resolve the documentation error.

3.5 LWT Stale Reads

In both list-append and wr-register tests, we ob-
served repeated violations of single-cell linearizability
in workloads which should have been strict serializ-
able. Reads could observe values which had been re-
placed tens of seconds ago. These problems were ex-
acerbated by network partitions, but also occurred in
healthy clusters with no exogenous faults.

For example, this test run set key 95 to 5, and after
that write completed, set key 95 to 8. Reads confirmed
the value was 8, and clients went on to set key 95 to 9,
12, and eventually 1824. After forty seconds of new val-
ues being written and read, a read of key 95 abruptly
returned 5 again: a stale read!

https://github.com/scylladb/scylla/issues/7113#issuecomment-680154530
https://github.com/scylladb/scylla/commit/bcdcf06ec7da06210a2ec66783e4ab2c596bc44c
https://github.com/scylladb/scylla/commit/bcdcf06ec7da06210a2ec66783e4ab2c596bc44c
https://docs.scylladb.com/using-scylla/lwt/#id11
https://docs.scylladb.com/getting-started/dml/
http://pmg.csail.mit.edu/papers/icde00.pdf
https://github.com/scylladb/scylla/issues/7170
https://github.com/scylladb/scylla/files/5175760/20200904T112219.000-0400.zip
https://github.com/scylladb/scylla/files/5175760/20200904T112219.000-0400.zip
https://aphyr.com/posts/294-jepsen-cassandra
https://aphyr.com/posts/294-jepsen-cassandra
https://issues.apache.org/jira/browse/CASSANDRA-8287
https://issues.apache.org/jira/browse/CASSANDRA-8287
https://issues.apache.org/jira/browse/CASSANDRA-13550
https://issues.apache.org/jira/browse/CASSANDRA-6123
https://issues.apache.org/jira/browse/CASSANDRA-6123
https://issues.apache.org/jira/browse/CASSANDRA-13550
https://docs.datastax.com/en/ddac/doc/datastax_enterprise/dbInternals/dbIntTransactionsDiffer.html#Isolation
https://docs.datastax.com/en/ddac/doc/datastax_enterprise/dbInternals/dbIntTransactionsDiffer.html#Isolation
http://datanerds.io/post/cassandra-no-row-consistency/
http://datanerds.io/post/cassandra-no-row-consistency/
http://web.stanford.edu/class/cs340v/papers/recovery.pdf
https://stackoverflow.com/questions/47315348/how-to-achieve-row-level-locking-in-cassandra/47315658#47315658
https://stackoverflow.com/questions/30643789/cassandra-row-level-isolation/
https://stackoverflow.com/questions/30572831/atomic-batch-in-cassandra/30573460#30573460
https://stackoverflow.com/questions/43684603/cassandra-titan-janusgraph-atomicity
https://stackoverflow.com/questions/53926024/understanding-of-isolation-in-cassandra-db
https://stackoverflow.com/questions/54852237/what-is-row-level-isolation
https://stackoverflow.com/questions/30643789/cassandra-row-level-isolation
https://github.com/scylladb/scylla/issues/2379#issuecomment-301061377
https://github.com/scylladb/scylla/issues/7170
https://github.com/scylladb/scylla/issues/7170
http://jepsen.io.s3.amazonaws.com/analyses/scylla-4.2/20200827T101450.000-0400.zip

Similarly, list-append tests reliably observed cycles

where the real-time order of transactions was incom-
patible with the actual contents of reads and writes.

G-single-realtime #0

For example, this test run contained the following real-
time transactional anomaly:

:time 109236930848,

Let:
T1 = {:type :0k, :f :txn, :value [[:r 43 [25 26 27]]1],
:process 1673, :index 5026}
T2 = {:type :0k, :f :txn, :value [[:append 43 4]], :time 108768382054,
:process 1632, :index 4988}
Then:

- T1 < T2, because T1 did not observe T2's append of 4 to 43.
- However, T2 < T1, because T2 completed at index 4988, 0.196 seconds
before the invocation of T1, at index 5005: a contradiction!

Both of these transactions contain only a single read
or write—they map to a single SELECT at consistency
level SERIAL, and an LWT UPDATE, respectively. This
is a minimal example of a much larger problem: of
the 1172 acknowledged transactions performed in this
two-minute test, 264 of them were involved in a single,
sprawling linearizability violation.

This turned out to be a symptom of a more fundamen-
tal problem: LWT split-brain.

3.6 LWT Split-Brain

In addition to stale reads, list-append tests contained
reads of lists which could not have arisen from any
sequence of appends—despite all operations using
SERIAL reads and LWT writes. This behavior occurred
in healthy clusters without any faults. For example,
take this history, where reads of key 36 returned the
following states:

[17
[17
[17

18
18
18

19]
19 20]
19 20 22]

18
23
18

[17
[22
[17

19 20 22 23 24 5 9 11 1 26 27 21]
24]
19 20 22 23 24 5 9 11 1 26 27 21]

After 4.6 seconds of stable existence, the entire list
momentarily disappeared, leaving only 22, 23, and 24.
Meanwhile, key 39 exhibited what appears to be a clas-
sic case of split-brain. Reads of key 39 observed:

(2]

[26 145 3]

[2 12]

[2 12]

[2 12]

[26 145312 16 14 29]

[26 145312 16 14 29 31]

For roughly four seconds, node n4 thought the value
was [2 12] while node n5 repeatedly observed [2 6
1 4 5 3]. Afterwards, the append of 12 appeared in
the middle of n5’s version.

Scylla traced this issue to an extant bug first discov-
ered in 2019. When calculating the hash of a row,
Scylla would inadvertently stop as soon as it encoun-
tered a null column. Since Jepsen’s tests involved a
null 1lwt_trivial column, changes to the value col-
umn did not affect row hashes. This allowed rows with
completely different values to be perceived as identical
during lightweight transactions.

Scylla’s engineers corrected the hash calculation in
Scylla 4.2.

3.7 LWT Split-Brain With Membership
Changes

Subsequent testing with membership changes re-
vealed that when nodes are removed and added from
the cluster, LWT operations could exhibit unusual
split-brain behavior. Clients can read and write to
what appear to be separately-evolving versions of the
same record. For example, in this test run, key 391
alternated between two completely independent time-
lines. Process 48 observed versions [3 9 10 ...]
while process 44 observed [15 16 17 24 ...].

8 :invoke :txn [[:r 391 nil]l]
48 :ok ctxn [[:r 391 [3]11]
44 :invoke :txn [[:r 391 nil]]
44 ok ctxn [[:r 391 [15 16 17]11]1]
48 :invoke :txn [[:r 391 nill]]
48 :ok ctxn [[:r 391 [3 9 10 27 28]1]
44 :invoke :txn [[:r 391 nil]]
44 :ok :txn [[:r 391 [15 16 17 24 25]]]

http://jepsen.io.s3.amazonaws.com/analyses/scylla-4.2/20200825T141332.000-0400.zip
http://jepsen.io.s3.amazonaws.com/analyses/scylla-4.2/20200825T141332.000-0400.zip
https://github.com/scylladb/scylla/issues/7116
https://github.com/scylladb/scylla/issues/4567
https://github.com/scylladb/scylla/issues/4567
https://github.com/scylladb/scylla/issues/7243
https://github.com/scylladb/scylla/issues/7243
https://github.com/scylladb/scylla/files/5228216/20200915T164246.000-0400.zip

Even stranger, a single write could be applied to both
timelines. Here, an append of 9 and 10 to key 1897 ap-

729 :invoke :txn [[:append 1896 20] [:

729 1ok 1txn [[:append 1896 20] [:

1072 :invoke :txn [[:append 1896 21] [:
[:append 1897 13]]

1072 1ok 1txn [[:append 1896 21] [:
[:append 1897 13]]

877 :invoke :txn [[:r 1897 nill]

877 :ok 1txn [[:r 1897 [11 12 13]]

1017 :invoke :txn [[:r 1897 nill]

1017 1ok :txn [[:r 1897 [11 12 13]]

729 :invoke :txn [[:r 1897 nill]

670 :invoke :txn [[:r 1897 nill]

729 1ok :txn [[:r 1897

670 1ok 1txn [[:r 1897

Scylla believes this issue has three causes.

First, repair-based streaming could stream data from
only one or two nodes, rather than a majority of repli-
cas. If a node was stopped or partitioned away, the re-
covering node could fail to observe committed writes,
causing data loss or logical state corruption.

Second, in CQL, LWT list append operations choose a
UUID for each list element based on the local system
clock, rather than using the LWT timestamp. These
timestamps could conflict across multiple nodes, caus-
ing elements to be lost or reordered.

Finally, ScyllaDB allowed cluster membership changes
to execute concurrently: nodes could be added or re-
moved while (e.g.) a replace-node operation was in

peared to take effect only on one fork, but a subsequent
append of 11, 12, and 13 was visible on both:

append 1897 9] [:append 1897 10]]
append 1897 9] [:append 1897 10]]
append 1897 11] [:append 1897 12]

append 1897 11] [:append 1897 12]

]

]

[9 10 11 12 13 18]]1]
[9 10 11 12 13 18]]]

progress, but Scylla’s membership system assumed
that changes occurred sequentially. Scylla asserts that
executing concurrent membership changes or remov-
ing a node which might still be running constitute op-
erator errors. Users must ensure a node is truly dead
before issuing a nodetool remove command. These
hazards were undocumented.

Scylla reports that they have patches for the first two
issues. However, Jepsen tests continue to observe
split-brain with node removal and network partitions.
Scylla believes this is due to the test removing nodes
which the cluster believed were down but were not to-
tally, permanently dead. Cursory testing where nodes
are killed prior to removal appears to confirm this hy-
pothesis.

Ne Summary Event Required Fixed In
7258 Aborted reads of failed “not enough replicas” LWT ops Partitions, crashes 419,421
7113 Missing values from BATCH updates None 4.3.rcl

7170 Single-partition updates aren’t isolated None Documented
7116 Split-brain with LWT None 4.2

7359 Split-brain with LWT due to improper repair streaming Membership & crash 829b4cl
7611 Split-brain with LWT due to timestamp conflict Membership Unresolved
7351 Split-brain with LWT due to concurrent membership Membership & partition Unresolved

4 Discussion

We found seven issues in Scylla 4.2-rc3. LWT updates
could return UnavailableException for writes which
actually committed. Batch updates could fail to re-
turn results for freshly inserted rows. Non-LWT up-

dates claimed to be isolated, but were not. With LWT,
healthy clusters exhibited stale reads and split-brain
scenarios in which values fluctuated between multiple
apparent timelines. Membership changes could also
induce split-brain behavior in LWT operations for a va-
riety of reasons.

https://github.com/scylladb/scylla/issues/7359
https://github.com/scylladb/scylla/issues/7359
https://github.com/scylladb/scylla/issues/7611
https://github.com/scylladb/scylla/issues/7611
https://github.com/scylladb/scylla/issues/7351
https://web.archive.org/web/20200927044549/https://docs.scylladb.com/operating-scylla/procedures/cluster-management/remove_node/
https://github.com/scylladb/scylla/issues/7243#issuecomment-740611905
https://github.com/scylladb/scylla/issues/7258
https://github.com/scylladb/scylla/issues/7113
https://github.com/scylladb/scylla/issues/7170
https://github.com/scylladb/scylla/issues/7116
https://github.com/scylladb/scylla/issues/7359
https://github.com/scylladb/scylla/issues/7611
https://github.com/scylladb/scylla/issues/7351

Aborted reads, batch updates and LWT split-brain in
healthy clusters have been fixed in 4.3.rcl. Some is-
sues with split-brain with membership changes have
been resolved in recent development builds, but others
remain; they may be resolved as Scylla moves to a Raft-
based membership system.

In addition, Scylla exhibits normal Cassandra behav-
iors around last-write-wins conflict resolution. This
may be surprising. As we discovered, even experienced
database engineers can fail to anticipate the behavior
of simple tests! Inserts may destroy data now or in
the future. Read-modify-write can result in lost up-
dates. Cells written together may not be visible to-
gether. These issues are (to varying degrees) docu-
mented in both Scylla and Cassandra, and can be mit-
igated, as we discuss below. Scylla has updated the
DML documentation: it no longer claims that non-
LWT operations are isolated, and explains in more de-
tail what can go wrong when timestamps conflict.

Cassandra counters and materialized views are known
to be unsafe and Scylla mirrors this behavior. Users
should expect counters to be approximations. Materi-
alized views may fail to reflect updates.

As of December 11, 2020, Scylla’s development builds
appear close to offering strict serializability for the lim-
ited (i.e. single read or batch write, both within a single
partition) transactions expressible under LWT. Cross-
partition operations are not isolated, but we expect par-
titions to be independently linearizable. The only con-
ditions under which we presently observe split-brain
involve concurrent membership changes, or member-
ship changes combined with other faults.

As always, we note that Jepsen takes an experimental
approach to safety verification: we can prove the pres-
ence of bugs, but not their absence. While we try hard
to find problems, we cannot prove the correctness of
any distributed system.

4.1 Recommendations

In Scylla 4.2-rc3, users should be aware that LWT
operations, even in healthy clusters, may be nonlin-
earizable. Reads may return stale data or inconsis-
tent views of a record’s history. Lists and sets can
have some or all of their values disappear then reap-
pear. As a workaround, users may be able to re-
structure their schemas and/or queries such that LWT-
conditional fields occur last in a row; e.g. by naming
those fields zzz_foo, rather than foo. This problem is
fixed in Scylla 4.2; we recommend that users upgrade
to at least this version.

Membership changes in 4.2-rc3 through 4.2-rc5 ap-

peared risky: we were able to induce split-brain be-
havior, even with LWT, by decommissioning, wiping,
and adding nodes. This behavior was exacerbated by
partitions, process crashes, and process pauses, but
we don’t yet know the details. It may be worth tem-
porarily pausing safety-critical operations during and
shortly after a membership change. Recent develop-
ment builds have reduced, but not eliminated, these
risks.

The Scylla cluster management procedures documen-
tation informs users that they can remove a dead node
by checking that its status is listed as DN in nodetool
status, then issuing a nodetool remove command.
This is unsafe: running nodes can be perceived as down
by any number of other Scylla nodes, e.g. due to a net-
work partition, IO hiccup, or VM migration. Remov-
ing a node under these conditions can result in split-
brain, causing lost updates and logical data corruption.
Users must confirm a node is ¢truly dead before remov-
ing it. Scylla recommends that users log in to the down
node to shut down the Scylla process, physically un-
power the machine, or terminate the VM or container
it runsin. If these procedures cannot be completed, the
node cannot be safely removed.

Likewise, users must take care not to issue a member-
ship operation before all previous membership opera-
tions have completed. It is unclear how to tell when
a membership operation has completed: there is no
method to block on a previously submitted member-
ship change, and in our testing, nodetool status of-
ten differeed from node to node. Scylla states that
users must wait for unanimous agreement on clus-
ter state before proceeding; cluster changes cannot be
safely performed when some nodes are unreachable.

Scylla maintains that these membership operations
are illegal: wusers should have known not to try
them. However, these rules remain completely undoc-
umented. It is reasonable to expect that users will at-
tempt to remove unresponsive nodes, or issue multi-
ple membership changes to a struggling cluster—and
if they do, they could encounter split-brain. We recom-
mended that Scylla clearly explain these constraints in
the cluster management documentation.

Users may have designed applications relying on
Scylla’s claims that writes to a single partition are iso-
lated and atomic. These claims are inaccurate. We
suggest reviewing any operations which update multi-
ple cells which depend on one another. For example,
setting a row’s password-hash and salt in a single
UPDATE does not necessarily mean that the two fields
will match, which could leave the user unable to log in.
Consider using LWT for these writes.

https://github.com/scylladb/scylla/issues/7082
https://docs.scylladb.com/getting-started/dml/#insert-statement
https://aphyr.com/posts/294-jepsen-cassandra#Counters
https://aphyr.com/posts/294-jepsen-cassandra#Counters
https://docs.scylladb.com/operating-scylla/procedures/cluster-management/
https://docs.scylladb.com/operating-scylla/procedures/cluster-management/
https://www.datastax.com/blog/2012/02/coming-cassandra-11-row-level-isolation

When safety is critical, we recommend that users em-
ploy LWT whenever updating existing data. Without
LWT, avoid inserting initial values which will be up-
dated later. Instead, rely on the fact that CQL updates
work well on nonexistent cells: one can add elements to
a CQL map or set without the field existing beforehand.
This prevents updates from being lost—so long as one
limits oneself to a commutative subset of CQL opera-
tions. Where possible, structure applications so that
they write to any given cell exactly once. Employing
Flake IDs for both timestamps and key construction
might help prevent conflicts.

These risks can be mitigated by maintaining (and alert-
ing on!) closely synchronized clocks for all Scylla nodes
and their clients, and by reducing the frequency of up-
dates. So long as updates are infrequent compared to
the scale of clock errors, these problems are unlikely to
occur. This does not mean they are impossible: as Cas-
sandra users continue to observe, normal NTP error,
misconfigurations, memory errors, and unsolved mys-
teries can lead to data written with timestamps any-
where from milliseconds to thousands of years in the
future.

4.2 Future Work

Jepsen has not evaluated Scylla’s behavior with re-
spect to schema changes, and our membership-change

testing is still in the early stages. Nor have we inves-
tigated Scylla’s DynamoDB-compatible API, Alterna-
tor. Scylla has done extensive testing with filesystem-
level fault injection—we would like to apply these with
Jepsen as well.

Scylla plans to address the outstanding issues we
found, but membership changes will likely remain
problematic for some time. Scylla’s membership proto-
col is based on Cassandra’s gossip system rather than
a consensus system, which makes it difficult to ensure
changes occur sequentially and that nodes have a con-
sistent view of the cluster state. Even though LWT op-
erations go through Paxos, nodes may disagree about
the quorum required for that Paxos operation. Once
Scylla finishes rewriting their membership system to
use Raft, we suspect these problems will be easier to
solve.

This work was funded by ScyllaDB, and conducted
in accordance with the Jepsen ethics policy. Jepsen
wishes to thank the entire Scylla team—in particular,
Kamil Braun, Peter Corless, Piotr Jastrzebski, Dor
Laor, Duarte Nunes, Konstantin Osipov, Alejo Sdnchez,
and Pavel Solodovnikov. We would also like to thank
Irene Kannyo for her editorial support during prepara-
tion of this manuscript.

http://yellerapp.com/posts/2015-02-09-flake-ids.html
https://speakerdeck.com/dzello/store-json-in-cassandra-the-hard-way?slide=49
https://speakerdeck.com/dzello/store-json-in-cassandra-the-hard-way?slide=49
https://www.slideshare.net/DataStax/clock-skew-and-other-annoying-realities-in-distributed-systems-donny-nadolny-pagerduty-cassandra-summit-2016
https://www.instaclustr.com/apache-cassandra-synchronization/
http://mail-archives.apache.org/mod_mbox/cassandra-user/201708.mbox/%3CCA+Emchknv2rRiQyQ3W9fbqiATdxpjtqtUMLr6J38V6uOs0o8Bg@mail.gmail.com%3E
http://mail-archives.apache.org/mod_mbox/cassandra-user/201708.mbox/%3C8590E6B1-7927-47A3-A682-F34F70CA41B0@gmail.com%3E
https://www.scylladb.com/alternator/
https://www.scylladb.com/alternator/
https://github.com/scylladb/charybdefs
https://github.com/scylladb/charybdefs
https://jepsen.io/ethics.html

	Background
	Test Design
	Workloads

	Results
	Destructive INSERTs
	Aborted LWT Reads
	Weird Return Values From Batch Updates #7113
	Normal Writes Are Not Isolated
	LWT Stale Reads
	LWT Split-Brain
	LWT Split-Brain With Membership Changes

	Discussion
	Recommendations
	Future Work

