
VoltDB 6.3
Kyle Kingsbury

2016-07-12

In the last Jepsen analysis, we found that RethinkDB could lose data when a network partition occurred during
cluster reconfiguration. In this analysis, we’ll show that although VoltDB 6.3 claims strict serializability, internal
optimizations and bugs lead to stale reads, dirty reads, and even lost updates. Fixes are now available in version
6.4. This work was funded by VoltDB, and conducted in accordance with the Jepsen ethics policy.

1 Background

VoltDB is a distributed SQL database intended for
high-throughput transactional workloads on datasets
which fit entirely in memory. All data is stored in RAM,
but backed by periodic disk snapshots and an on-disk
recovery log for crash durability. Data is replicated to
at least k+1 nodes to tolerate k failures. Tables may be
replicated to every node for fast local reads, or sharded
for linear storage scalability.

As an SQL database, VoltDB supports the usual ad-
hoc SQL statements, with some caveats (e.g. no auto-
increment, no foreign key constraints, etc.) However,
its approach to multi-statement transactions is dis-
tinct: instead of BEGIN ... COMMIT, VoltDB trans-
actions are expressed as stored procedures, either in
SQL or Java. Stored procedures must be determinis-
tic across nodes (a constraint checked by hashing and
comparing their resulting SQL statements), which al-
lows VoltDB to pipeline transaction execution given a
consensus on transaction order.

That consensus is obtained through a custom consen-
sus algorithm. Update operations on a single partition
are ordered by that partition’s Single-Partition Initia-
tor, or SPI: a stable leader which ensures transactions
don’t interleave. All replicas of a partition follow the
SPI’s updates. In contrast to updates, pure-read trans-
actions are not ordered by the SPI, and read local state
directly off any replica. Operations across multiple par-
titions are ordered by a single Multi-Partition Initiator
(MPI) for the entire cluster, which issues operations to
relevant SPIs for execution on their partitions.

This design allows VoltDB to provide high throughput

for single-partition transactions, while still supporting
occasional multi-partition queries—all at strict seri-
alizability. Stored procedures which operate on data
within a single partition can be efficiently executed by
the SPIs, and transaction throughput scales as node
counts (or the number of SPIs per node) rise. Multi-
partition procedures must pass sequentially through
the MPI, and their throughput slowly drops with node
count due to coordination costs. In the regime where
single-partition work dominates, throughput scales
semilinearly with nodes, but VoltDB’s internal bench-
marks suggest multi-partition transactions are prac-
tically limited to a few hundred updates/sec, or tens
of thousands of reads/sec (with no updates). This
is why VoltDB’s performance numbers use entirely
single-partition workloads.

As it turns out, coordination in real-world transac-
tional workloads is less common than one might ex-
pect. The industry-standard benchmark TPC-C, for
instance, is largely shardable, since the bulk of its
transactions occur within the scope of a single dis-
trict. In fact, TPC-C can even be implemented with-
out any coordination between nodes. Many OLTP sys-
tems involve high volumes of single-key operations cou-
pled with periodic analytic rollups. Others, like SaaS
offerings, have strong boundaries isolating one cus-
tomer from another, and only administrative transac-
tions cross customer boundaries. VoltDB targets these
applications—and offers them the strongest claims of
any database we’ve tested with Jepsen: strict serial-
izable isolation. In this work, we aim to verify those
safety claims.
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2 Consistency

Unlike most SQL databases, which default to weaker
isolation levels for performance reasons, VoltDB
chooses to provide strict serializable isolation by de-
fault: the combination of serializability’s multi-object
atomicity, and linearizability’s real-time constraints.

Serializability is the strongest of the four ANSI SQL
isolation levels: transactions must appear to execute
in some order, one at a time. It prohibits a number
of consistency anomalies, including lost updates, dirty
reads, fuzzy reads, and phantoms.

Serializability requires transactions appear to execute
in some order, but doesn’t specify what that order
should be. This allows for some unintuitive behav-
iors. For instance, read-only transactions may execute
at any logical time, regardless of when the query is
performed. Under serializability, SELECT COUNT(*)
FROM USERS may always return 0, regardless of the
number of users currently in the table, because when
the table was first created, it had no contents. It could
also return the count from five minutes ago. We call
these reads-in-the-past stale reads.

Serializable systems are also free to discard write-only
transactions by reordering them arbitrarily far into the
future. This also applies to read-modify-update. For
instance, we can UPDATE videos SET view_count =
view_count + 1 WHERE id = 123 at any time, be-
cause you can increment any number, and if there’s no
row 123, the where clause wouldn’t match. It would
be legal to apply this transaction just prior to the heat
death of the universe—and if that happened, nobody
would see the increment. Therefore, a serializable sys-
tem is not required to apply this update at all. Similar
arguments allow serializable systems to discard trans-
actions whose consequences would be overwritten by
some already-executed transaction, and so on.

If reading from the past and throwing away blind
writes is considered legal, perhaps serializability is not
the only constraint we care about. Can we do better?

Ideally, we’d like a transaction to take place sometime
after we send it to the database, and some time before
the database confirms it has committed. That way, we
could guarantee that once a transaction is complete,
any future transaction will see its effects. This real-
time constraint is called linearizability, and when ap-
plied to multi-object transactions, we obtain a consis-
tency model called strict serializability.

VoltDB’s documentation explicitly claims serializabil-
ity, but implicitly claims strict serializability as well.
For instance, their transaction whitepaper asserts:

Because VoltDB always performs syn-
chronous replication of read-write trans-
actions within a partition, end-users are
guaranteed to read the results of prior
writes even when reads bypass the SPI se-
quencer

The guarantee that prior writes are visible to clients
suggests that VoltDB’s transactions obey linearizabil-
ity’s real-time constraint. VoltDB’s engineers confirm
this interpretation: it should provide strict serializabil-
ity. Because strict serializable systems are also lin-
earizable, we can use Jepsen’s existing linearizability
checker to verify VoltDB’s correctness—both on single
objects in the database, and on systems of multiple
rows.

3 Stale reads

VoltDB can shard tables into logical partitions (not
to be confused with network partitions), and each of
those partitions is replicated to k+1 sites for redun-
dancy. Transactions which only interact with data in
a single partition can be executed by that partition’s
SPI, without coordinating with other partitions. Our
goal is to test whether each SPI ensures linearizability
within a single partition, by performing reads, writes,
and compare-and-sets on a single database row.

To begin, we’ll create a simple table of registers, each
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identified by a primary key id, and partition the table
by those ids. Each node in the cluster will own some
fraction of the keyspace.

(voltdb/sql-cmd!
"CREATE TABLE registers (
id INTEGER UNIQUE NOT NULL,
value INTEGER NOT NULL,
PRIMARY KEY (id)

);
PARTITION TABLE registers ON COLUMN id;")

Then, on a given register, we’ll perform three types
of operations: a read, a write, and a compare-and-
set. Reads and writes are easy: VoltDB prede-
fines stored procedures called REGISTERS.select and
REGISTERS.upsert which take the primary key. For
compare-and-set, we’ll define an SQL stored procedure.
Then we’ll call those procedures to perform operations
on the database.

We define generators for each operation type, and have
5 clients (one for each node) perform a mix of writes

and CaS ops, while another 5 clients perform reads—
roughly once a second for each client. We dedicate spe-
cific clients to reads for two reasons: first, VoltDB has
an optimized path for read-only transactions, and sec-
ond, if a client blocks writing a value to a specific node,
say, during a failure, we’d like another client to have a
chance to see if the transaction succeeded or failed be-
fore the failure resolves. Sometimes consistency errors
manifest during that window.

We’ll use Jepsen’s independent/concurrent-generator
to run several of these single-register tests
concurrently—improving our chances of catching an
error in any given time period. Each single-register
test lasts for 30 seconds.

After 25 seconds, Jepsen partitions the network into
two randomly selected components, and waits another
25 seconds before healing the fault.

This test detects a linearizability violation almost im-
mediately.

This diagram shows three processes (10, 11, and 18)
concurrently executing a read of 2, a read of 4, and a
write of 0. Time flows left to right. We know the value
must be 2 during process 10’s read, and that read could
be preceded or followed by a write of 0—but neither 0
nor 2 allows process 11 to read the value 4. This read
of 4 is inconsistent with a linearizable register.

Looking at the full history suggests an explanation.
Process 13 begins and completes a read of 4, the cur-
rent value. At some point shortly thereafter, a net-
work partition takes effect, isolating two nodes from
the other three.

13 :invoke :read nil
13 :ok :read 4
18 :invoke :write 0 ; succeeds

15 :invoke :cas [0 1] ; fails
17 :invoke :cas [1 2] ; succeeds
19 :invoke :write 1 ; succeeds
16 :invoke :cas [4 3] ; fails
10 :invoke :read nil
10 :ok :read 2
11 :invoke :read nil
11 :ok :read 4

Writes block (pending timeout) as nodes wait for ac-
knowledgement from their disconnected peers, but
reads do not require coordination in VoltDB and com-
plete successfully. We see a consistent pattern until
the partition resolves: process 11 reads 4, but the other
nodes see 2. One possible interpretation is that one
component kept 4, while the other wrote 0, wrote 1,
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compare-and-set 1 to 2, then read 2.

12 :invoke :read nil
12 :ok :read 2
14 :invoke :read nil
14 :ok :read 2
13 :invoke :read nil
13 :ok :read 2
10 :invoke :read nil
10 :ok :read 2
11 :invoke :read nil
11 :ok :read 4

This is a type of split-brain: different nodes have in-
ternally consistent but differing states. The fact that
writes block, however, prevents the system from diverg-
ing. One node is trapped in the past, but it has not
accepted conflicting writes. This history is not strict
serializable, but it is serializable—because we could re-
order the transactions such that the alternating reads
made sense.

This anomaly arises from an optimization we men-
tioned earlier: read-only transactions don’t pass
through VoltDB’s transaction-ordering system:

As an optimization, read-only transactions
skip the SPI sequencing process and are
routed directly to a single copy of a parti-
tion. There is no useful reason to replicate
reads. Effectively, this optimization load-
balances reads across replicas. Because
VoltDB always performs synchronous repli-
cation of read-write transactions within
a partition, end-users are guaranteed to
read the results of prior writes even when
reads bypass the SPI sequencer.

The argument here is mostly sound: because reads
don’t change the state of a replica, they can be freely
executed at any replica without coordination. The re-
sult is always serializable—but not strict serializable,
because we might read from a stale replica. If a node is
isolated by a network partition, it might deliver old re-
sults for read requests until it detects a fault and steps
down. We saw this problem in etcd, consul, and mon-
godb: all assumed local state was sufficient to ensure
linearizable reads.

4 Dirty reads

When an SPI receives a write, it first orders the write
in its internal transaction queue. It then broadcasts
that write to all other replicas for that partition, jour-
nals that write to disk (when synchronous command

logging is enabled), and applies the write locally. It
then blocks, awaiting a response from all replicas.
Once all replicas have acknowledged the write, VoltDB
returns the transaction’s results to the client.

Read-only transactions don’t go through this syn-
chronous replication process, but rather, execute on
any replica’s local state and return immediately. This
allows for stale reads when a successful transaction is
incompletely replicated, but also suggests the possibil-
ity of dirty reads when an aborted transaction’s results
are made visible.

For instance, we might insert a unique number n into
a table, which is received and applied locally by some
SPI. Before the SPI receives acknowledgement from
its peers, a concurrent read on that SPI’s local replica
could see n. If a new SPI is subsequently elected with-
out having received n, then the insert would appear
never to have happened. This implies (at best) a dirty
read.

Since VoltDB allows stale reads, we might not be able
to tell which transactions committed or not. We need a
way to perform a final strong read—one which is guar-
anteed to see all prior transactions. To do this, we
can write a VoltDB stored procedure which includes an
unused insert statement. VoltDB statically analyzes
stored procedures to identify whether they are read-
only, and the possibility of a write forces this transac-
tion to go through the SPI—hopefully preventing stale
reads.

Our dirty-read client will create a table (dirty_reads)
with a single integer column (id). Then we’ll handle
read operations by trying to read a specific ID, write
ops by inserting the given value, and strong-read ops
by calling our strong-read stored procedure to select all
IDs in the table.

Based on our hunches about the way a dirty read might
happen, we’ll keep track of the most recently attempted
insert on each node in the cluster, and have reads
against that node try to read that value. We’ll reserve
a single process for writing to each node, and the re-
maining processes will perform reads. Then we’ll have
each process perform roughly a hundred ops per sec-
ond, while Jepsen’s nemesis wreaks havoc with the
cluster. At the end of the test, we’ll heal the cluster,
and have each client perform a final strong read.

We suspect that dirty reads require a node perform-
ing a write to become isolated from some of its peers,
but still service concurrent reads from clients. Isolated
nodes will kill themselves after discovering they can no
longer see a majority, but just for good measure, we’ll
kill the node ourselves, after it’s been isolated for a few
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seconds, then restart it and rejoin it to the cluster. To
make sure the cluster continues running, we’ll make
sure to keep a majority intact at all times.

To verify correctness, we’ll examine the history of suc-
cessful operations, looking at the set of successful

writes, reads, and strong reads. When we don’t see
an inserted value with a normal read, we’ll call that
unseen—a measure of our tests’s resolving power. Con-
versely, if we see a value in a normal read, but it’s not
present in a final strong read, we know it saw uncom-
mitted state, and call it dirty.

{:dirty-reads
{:valid? false,
:read-count 28800,
:strong-read-count 28733,
:unseen-count 26,
:dirty-count 93,
:dirty
#{21713 21714 21715 21716 21717 21718 21719 21720 21721 21722 21723
21724 21725 21726 21727 21728 21729 21730 21731 21732 21733 21734
21735 21736 21737 21738 21739 21740 21741 21742 21743 21744 21745
21746 21747 21748 21749 21750 21751 21752 21753 21754 21755 21756
21757 21758 21759 21760 21761 21762 21763 21764 21765 21766 21767
21768 21769 21770 21771 21772 21773 21774 21775 21776 21777 21778
21779 21780 21781 21782 21783 21784 21785 21786 21787 21788 21789
21790 21791 21792 21793 21794 21795 21796 21797 21798 21799 21800
21801 21802 21803 21804 21805},

As suspected, this test suggests the existence of dirty
reads. A node which crashes while waiting for its
writes to replicate could expose uncommitted transac-
tion state to concurrent reads.

Normally, transactions are committed locally on the
SPI, and may only return when all replicas have ac-
knowledged the transaction. However, if a partition
interrupts replication, that transaction is visible for
reads on some replicas before it has fully committed.
If a new SPI is elected without that transaction, then

those reads saw data from an uncommitted transac-
tion: a dirty read has occurred.

Both stale reads and dirty reads are addressed by ENG-
10389, which forces reads to wait for writes to complete
before they can return. This is the new default behav-
ior for VoltDB in 6.4, and is configurable with a global
option. VoltDB may introduce per-transaction options
for users who wish to perform selective unsafe reads in
exchange for lower latencies.
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4.1 Lost updates

We’ve assumed, in our dirty-read test, that inserted
values not present in the final read set failed—but this
assumption isn’t necessarily justified. It could be that
the insert did commit, but its data was later lost: a lost
update. To verify this assumption, we’ll check for suc-
cessfully inserted values that aren’t present in a final
read.

{:dirty-reads
{:valid? false,
:read-count 27612,
:strong-read-count 26799,
:unseen-count 53,
:dirty-count 866,
:dirty #{12227 12228 12235 ...

13631 13635 13636},
:lost-count 866,
:lost #{12227 12228 12235 ...

13631 13635 13636}}

Not only is uncommitted transaction state visible to
concurrent reads, but confirmed transactions can be
lost entirely when nodes are isolated from a majority
of the cluster. In this particular test, every dirty read
was in fact a lost update—in fact, it’s difficult to prove
that dirty reads exist at all, if committed transactions
can be arbitrarily discarded.

Lost-update anomalies also appear (much less fre-
quently) in single-register linearizability tests: we can
use strong reads or no reads at all to rule out read-only
transaction anomalies.

Why is this possible? How can a transaction be ac-

knowledged to the client if it’s not present on every
node? We said earlier that transactions can only re-
turn if they’re acknowledged by every replica.

Wait a minute—if the coordinator needs every replica,
how can VoltDB tolerate the loss of a node?

Like Kafka 0.8’s replication algorithm, VoltDB can
give up on nodes which are unresponsive. These nodes
are ejected from the cluster. With unanimous consen-
sus from the remaining reachable nodes, VoltDB is free
to declare a new cluster (a subset of the old one), and
continue running. Since the cluster no longer includes
the unreachable nodes, the SPI is free to return writes
which weren’t replicated to them.

This works well for node crashes, but in the event of a
network partition, nodes on both sides would declare
the others dead, splitting into two independent clus-
ters. To prevent this split-brain scenario, VoltDB has
a partition detector which watches their internal clus-
ter consensus system (termed ZooKeeper, but actually
a homegrown consensus algorithm which provides the
ZK API) for updates to the cluster state. When a clus-
ter shrinks, and the new cluster is not a majority of the
previous cluster, the partition detector shuts down the
node to prevent divergence.

Since ZK watches are asynchronous, it’s possible for
waiting transactions to be released to the client before
the partition detection code can run and shut down
the node. Therefore, writes on the minority side of a
partition—which should fail—can be successfully ac-
knowledged to the client. This is ENG-10453, and is
addressed in VoltDB 6.4 by performing partition detec-
tion before releasing pending client responses.
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This is not the only source of lost updates: VoltDB’s
crash recovery system can also cause write loss.

During recovery, the recovery planner chooses the
longest disk log from all nodes as the authoritative
copy. Since operations are journaled to the log im-
mediately, before the node receives acknowledgement,
nodes on the minority side of a partition may have
longer logs than those on the majority. This means
the recovery planner may discard acknowledged writes
on the majority, if some minority node accepted more
requests for that partition before crash. This is ENG-
10486, and has been fixed in 6.4 by reconstructing the
final cluster topology from the logs.

5 Multi-key transactions

Our single-register linearizability test only evaluated
transactions on a single partition. We’d also like to
evaluate the MPI (Multi-Partition Initiator), to see
if transactions that operate on multiple keys satisfy

strict serializability.

For simplicity, we’ll restrict ourselves to read and write
operations on a set of registers, identified by key. We’ll
represent operations on those registers with a tuple
of function, key, and value, e.g. [:read :x 2], or
[:write :y 3]. A transaction is just a sequence of
those operations, which should be applied in order and
atomically. We’ll generate transactions which operate
on any subset of the keyspace, to allow for concurrency.
To keep the state space small, we’ll perform a read be-
fore every write. This helps our analyzer prune invalid
linearizations, because while blind writes can always
succeed, a specific read restricts the value of its regis-
ter.

In Knossos (Jepsen’s linearizability checker), we’ll de-
fine a new datatype for these transactional k/v systems.
This model defines the semantics of a singlethreaded
multi-register system: transactions are applied by tak-
ing each operation in turn, updating values for writes,
and returning inconsistent states when an operation
tries to read the wrong value for a given key.

(defrecord MultiRegister []
Model
(step [this op]
(assert (= (:f op) :txn))
(reduce (fn [state [f k v]]

; Apply this particular op
(case f
:read (if (or (nil? v)

(= v (get state k)))
state
(reduced
(inconsistent
(str (pr-str (get state k)) "�" (pr-str v)))))

:write (assoc state k v)))
this
(:value op))))

Note that nil reads are always legal in this model. When a read is attempted and crashes, we don’t know what
value it would have read, and use nil to express that it could have been anything.

We’ll create a table, much like the single-register test, composed of systems, each of which has many keys mapping
to values. We’ll test multiple systems simultaneously to improve our chances of finding a consistency violation.

CREATE TABLE multi (
system INTEGER NOT NULL,
key VARCHAR NOT NULL,
value INTEGER NOT NULL,
PRIMARY KEY (system, key)

);
PARTITION TABLE multi ON COLUMN key;

Next, we need a stored procedure to execute our generated transactions. We define general read and write SQL
statements, and take arrays for the functions, keys, and values for each operation. Then we zip through those
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arrays, building up a queue of SQL statements to apply. Calling voltExecuteSQL() applies each statement,
and returns an array of results to the client.

public class MultiTxn extends VoltProcedure {
public final SQLStmt write =

new SQLStmt("UPDATE multi SET value = ? WHERE system = ? AND key = ?");
public final SQLStmt read =

new SQLStmt("SELECT * FROM multi WHERE system = ? AND key = ?");

// Arrays of the function, key, and value for each op in the transaction.
// We assume string keys and integer values.
public VoltTable[] run(int system, String[] fs, String[] ks, int[] vs) {
assert fs.length == ks.length && ks.length == vs.length;

for (int i = 0; i < fs.length; i++) {
if (fs[i].equals("read")) {
voltQueueSQL(read, system, ks[i]);

} else if (fs[i].equals("write")) {
voltQueueSQL(write, vs[i], system, ks[i]);

} else {
throw new IllegalArgumentException(

"Don't know how to interpret op " + fs[i]);
}

}
return voltExecuteSQL();

}
}

Our client applies transactions to the system by call-
ing that stored procedure, and copying any values the
transaction read back into the completion operation, so
we can verify their correctness.

In several days of test runs, through partitions,
node crashes, rejoins, and disk recoveries, this multi-
transaction test has yet to find a nonlinearizable case.
This is somewhat surprising, because we know VoltDB
loses updates. It could be that the multi-partition code-
path introduces additional serialization points which
prohibit the anomalies we saw in single-partition
tests—or perhaps there are simply performance differ-
ences that mask anomalies. The state space for multi-
register tests is significantly larger than for single reg-
isters, which limits our resolving power.

One possibility is that the global order imposed by
the MPI means that minority replicas can’t receive
enough pending requests to cause divergence on re-
covery. ENG-10486 may not be possible when all
transactions pass through the MPI, but concurrent
single-partition transactions could still cause diver-
gence and data loss in multi-partition transactions, by
forcing minority write logs to be longer. I’ve exper-
imented with concurrent single-partition workloads,
but haven’t found a nonlinearizable case yet.

6 Discussion

To summarize, VoltDB 6.3 allows stale reads, dirty
reads, and lost updates due to network parti-
tions and fault recovery. It cannot satisfy its claims
of strict serializability; nor can it satisfy any of the
weaker SQL isolation levels: repeatable read, snap-
shot isolation, read committed, and even read uncom-
mitted are out of the question. However, the VoltDB
team is determined to fix consistency bugs and choose
safe defaults, even when doing so would reduce perfor-
mance. Users of 6.4 should have a much safer experi-
ence.

Until upgrading, users can mitigate VoltDB’s stale
and dirty reads by using a stored procedure includ-
ing an unused update statement for read-only trans-
actions. The VoltDB analyzer will run these queries
through the normal update path, instead of the opti-
mized read path. This does not ensure correctness:
VoltDB will still allows nonlinearizable histories due to
lost updates—but it does significantly reduce the prob-
ability of stale and dirty reads.

Given n nodes and k+1 replicas, VoltDB believes that
lost updates should be impossible in clusters where n
< 2k: an isolated component of a VoltDB cluster will
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kill itself immediately if it does not have at least a sin-
gle copy of every data partition. As node counts rise,
network partitions are more likely to kill the entire
cluster. Rack-aware replica placement can mitigate
the risk of total shutdown by ensuring rack-isolating
partitions will preserve a copy of every replica on some
subset of racks, but this reintroduces the possibility of
lost updates where k >= rack-count - 1.

In testing, Jepsen also uncovered a few minor issues
which don’t appear to affect safety: rejoining more
than one node to the cluster at once can cause some
to crash with mysterious errors, and you can rejoin
to nodes which are about to kill themselves, causing
both nodes to crash. The Java client’s auto-reconnect
thread never stops trying, even after client close. Fi-
nally, identical schema changes, like creating the same
table twice, are subject to a mostly harmless race con-
dition.

Most consensus systems we’ve tested with Jepsen have
a well-defined cluster membership and use majority
quorums: network partitions can cause some nodes to
go unavailable, but service continues so long as a ma-
jority of the cluster remains alive and connected. Mi-
nority nodes typically pause and reconnect when the
network heals. VoltDB behaves differently: network
partitions cause minority nodes to shut down perma-
nently; operator intervention is required to restore full
service.

VoltDB also does not require a majority of the original
cluster—rather, it needs a majority of the current clus-
ter to continue. This means a cluster can shrink from
five nodes to three, then two, then possibly a single
(blessed) node—so long as the remaining cluster has
at least one copy of every logical partition. This allows
VoltDB to tolerate more failures than most strongly
consistent systems, but also reduces durability guar-
antees: acknowledged transactions may not be present
on as many nodes as you’d think.

Version 6.4 includes fixes for all the issues discussed
here: stale reads, dirty reads, lost updates (due to both
partition detection races and invalid recovery plans),

and read-only transaction reordering are all fixed, plus
several incidental bugs the VoltDB team identified. Af-
ter 6.4, VoltDB plans to introduce per-session and per-
request isolation levels for users who prefer weaker
isolation guarantees in exchange for improved latency.
VoltDB’s pre-6.4 development builds have now passed
all the original Jepsen tests, as well as more aggres-
sive elaborations on their themes. Version 6.4 appears
to provide strict serializability: the strongest safety in-
variant of any system we’ve tested thus far. This is
not a guarantee of correctness: Jepsen can only demon-
strate faults, not their absence. However, I am con-
fident that the scenarios we identified in these tests
have been resolved. VoltDB has also expanded their
internal test suite to replicate Jepsen’s findings, which
should help prevent regressions.

These tests explored simple majority/minority network
partitions, process crashes, rejoin, and recovery, but
there are several avenues for future research. VoltDB
requires that transactions be deterministic, and shuts
down upon detecting nondeterministic execution to
avoid data corruption. How well does this mechanism
preserve safety? Databases vary in their ability to de-
tect and compensate for single-bit and truncation er-
rors at the network and disk level; we could investi-
gate VoltDB’s error correction behavior. Partial net-
work partitions are well-handled by Paxos, ZAB, etc.,
but can confuse algorithms which use fault detectors
to enforce correctness: how well does VoltDB tolerate
partial failure? Finally, VoltDB has several implemen-
tations of k-ordered flake IDs for assorted internal pur-
poses: we might explore the impact of clock skew.

VoltDB has also published an in-depth discussion of
these issues, and a Consistency FAQ that may be of
interest.

This work was funded by VoltDB, and conducted in ac-
cordance with the Jepsen ethics policy. My sincerest
thanks to the VoltDB team, especially John Hugg, Ruth
Morgenstein, and Ning Shi, for their help in testing, and
hard work in fixing bugs. I am also indebted to Camille
Fournier, Marc Hedlund, Peter Alvaro, Peter Bailis and
Caitie McCaffrey for their valuable peer review.
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