JEPSEN

Bufstream 0.1.0

Kyle Kingsbury
2024-11-12

Bufstream is a Kafka-compatible streaming system which stores records directly in an object storage service
like S3. We found three safety and two liveness issues in Bufstream, including stuck consumers and producers,
spurious zero off sets, and the loss of acknowledged writes in healthy clusters. These problems were resolved by
version 0.1.3. We also characterize four issues related to Kafka more generally, including the lack of authoritative
documentation for transaction semantics, a deadlock in the official Java client, and write loss, aborted read, and
torn transactions caused by the lack of message ordering constraints in the Kafka transaction protocol. These
issues affect Kafka, Bufstream, and (presumably) other Kafka-compatible systems, and remain unresolved. A
companion blog post from Buf is available as well. This report was funded by Buf Technologies, Inc. and

conducted in accordance with the Jepsen ethics policy.

1 Background

Kafka is a popular streaming system which provides
replicated, sharded, append-only logs. Bufstream is a
drop-in replacement for Kafka designed to prioritize
data governance and cost efficiency in cloud environ-
ments.

Like Kafka, Bufstream provides a collection of named,
partially ordered logs called topics. Each topic is di-
vided into partitions.' Each partition is a totally or-
dered, append-only list of records (also called messages
or events). Within a partition, each record is uniquely
identified by a monotonically advancing integer offset.
Offsets may be sparse: some offsets are used for stor-
ing internal metadata and are invisible to clients.

Bufstream works with standard Kafka clients. There
are two main types of clients in Kafka-compatible
systems. Producers append records to partitions
by calling producer.send(). Consumers read those
records. Consumers are first bound to partitions
via consumer.assign() or consumer.subscribe()
operations.? Once bound, one repeatedly calls
consumer.poll() to receive records from any of those
partitions. Each consumer can belong to a consumer
group, which shares responsibility for processing
records from a set of topics.

Each partition has a last stable offset (LSO), which is
the highest offset below which every transaction has

completed. It also has a committed offset for each con-
sumer group, which is the highest offset below which
that consumer group has processed all records in the
partition.?

As in Kafka, records are opaque blobs of bytes by de-
fault. However, Bufstream can integrate with the Buf
Schema Registry to introspect Protocol Buffer records.
This allows Bufstream to validate records before com-
mitting them, enforce field-level access control poli-
cies, and reformat data to interoperate with other sys-
tems. Unlike Kafka, which stores data on local disks
and has its own replication protocol, Bufstream writes
its data directly to an object storage service. By re-
lying on object storage, which often bundles the cost
of replication traffic, Bufstream aims to reduce costs.
This also allows Bufstream nodes to run as stateless,
auto-scaled VMs.*

Bufstream comprises three subsystems: an agent, an
object store, and a coordination service. The agent
is a stateless service which provides the Kafka API.
Clients connect to agents to publish and consume
records. The object store (e.g. S3) stores chunks of
records as they are written, and makes them avail-
able to readers. The coordination service (presently
etcd) helps agents establish which chunks in storage
are committed, and what the order of records should
be.

As of October 2024, Bufstream was deployed only with
select customers. Its documentation claimed to be
“a drop-in replacement for Apache Kafka,” and listed

!In this article, the word partition can refer to either a network omission fault (“network partition”) or an ordered log within a

Bufstream topic (“topic-partition”).

2The assign operation informs a consumer that it should poll records from a specific set of topic-partitions. The consumer starts at
some position in each of those partitions and advances sequentially through them. The subscribe operation takes only a topic,
and allows Kafka to automatically determine which partitions are bound to the consumer. These allocations are dynamically

balanced between all active, subscribed consumers.

3Kafka’s documentation varies in whether the committed offset is the offset of the last committed record, or the uncommitted offset

immediately after the last committed record.

4One can also imagine that using a common format, like Apache Iceberg, would allow Bufstream data to be read directly from S3
by query engines like Spark, Trino, Google BigLake, or Amazon Redshift—without storing redundant copies of the data.

https://buf.build/product/bufstream
https://kafka.apache.org/
https://buf.build/blog/bufstream-jepsen-report
https://jepsen.io/analyses/ethics
https://kafka.apache.org/
https://buf.build/product/bufstream
https://buf.build/blog/bufstream-kafka-lower-cost
https://buf.build/product/bsr
https://buf.build/product/bsr
https://protobuf.dev/
https://buf.build/docs/bufstream/data-governance/schema-enforcement
https://docs.confluent.io/kafka/design/replication.html
https://buf.build/docs/bufstream/kafka-compatibility/configure-clients#optimizing-performance-and-write-throughput
https://buf.build/docs/bufstream/kafka-compatibility/configure-clients#optimizing-performance-and-write-throughput
https://buf.build/docs/bufstream/cost
https://etcd.io
https://kafka.apache.org/38/javadoc/org/apache/kafka/clients/consumer/KafkaConsumer.html
https://iceberg.apache.org/
https://iceberg.apache.org/docs/latest/spark-queries/
https://www.starburst.io/blog/introduction-to-apache-iceberg-in-trino/
https://cloud.google.com/bigquery/docs/iceberg-tables
https://docs.aws.amazon.com/redshift/latest/dg/querying-iceberg.html

compatibility with Kafka’s transactions and exactly-
once semantics. However, there were few specific
safety claims beyond Kafka compatibility. Through-
out this work we use Kafka’s documentation as our
benchmark for evaluating Bufstream.

1.1 Client Safety

Like Kafka, Bufstream is intended for a variety of
streaming applications with different throughput, la-
tency, and safety tradeoffs. As in Jepsen’s previous
work on Kafka-compatible systems, we set a variety of
client configuration options to obtain safer behavior.

We generally used the default acks = all for our pro-
ducers. In Bufstream, acks = 0 allows the server to
acknowledge a write immediately without waiting for
storage. As in Kafka, this may lose committed writes.
Both acks = 1 and acks = all block until Bufstream
is certain the write is durably persisted.

Kafka producers can automatically retry writes. We
used the default setting enable.idempotence = true
to prevent appending multiple copies of a record to the
log.

Confluent’s documentation claims that “... by default
Kafka guarantees at-least-once delivery.” This is un-
true. By default, Kafka consumers may automati-
cally mark offsets as committed, regardless of whether
they have actually been processed by the applica-
tion. This means that a consumer can poll a series
of records, mark them as committed, then crash—
effectively causing those records to be lost. We set
enable.auto.commit = false to prevent this.’

When a consumer subscribes to a topic, it starts at
the last committed offset. If no offset has been com-
mitted, it defaults to the most recent offset. This is
another way in which Kafka’s defaults do not ensure
at-least-once delivery. We used auto.offset.reset =
earliest to make sure consumers had a chance to ob-
serve the entire log.

1.2 Transactions

Bufstream supports Kafka’s transaction system.
Kafka transactions have complex semantics deter-
mined by a wide array of configuration settings and
the specific calls executed by producer and consumer.
As we discussed two years ago, Kafka’s official docu-
mentation largely omits any description of transaction
invariants. Instead, documentation remains scat-
tered across various blog posts, Wiki pages, Kafka
Improvement Proposals, Google Docs, introductory
guides, and the Java client’s API documentation.

These resources are often confusing, underspecified,
contradictory, or outright wrong. They generally focus
on implementation mechanics rather than invariants.
We have inferred Kafka’s intended transaction seman-
tics as best we can from these documents and observed
behavior.

In broad terms, a Kafka transaction comprises a set of
records sent by a producer and a map of partitions to
the maximum offsets polled by a consumer. Transac-
tions provide a weak form of atomicity. If and only if
the transaction commits, every sent record is durable
and eventually visible to read_committed consumers
in their respective partitions, and the committed off-
set for each partition is at least as high as the cor-
responding offset specified in the transaction. If the
transaction does not commit, committed offsets do not
advance, and some (or all) writes may (or may not) be
visible depending on consumer configuration.

With the right implicit assumptions—for instance,
that consumers process every record seen, that every
record is processed in the scope of a transaction, that
every transaction commits its highest consumed off-
sets, and so on—the committed offsets of a transaction
can be understood as the set of records it consumed.
With care, one can theoretically use transactions to ob-
tain what Kafka terms “exactly-once semantics.”

Consumers can run in one of two isolation levels:
read_uncommitted or read_committed. At the default
read_uncommitted, consumers may read values writ-
ten by transactions which actually aborted. This is
known as aborted read (Gla). Transactions may ob-
serve none, part, or all of an aborted transaction’s
writes. Two or more read-write transactions may
also observe each other’s writes: a form of circu-
lar information flow (Glc). Kafka’s documentation
says that read_committed prevents Gla, and sort of°
guarantees’ that either all or none of a transaction’s
writes are eventually visible. In our tests of Kafka,
Redpanda, and Bufstream, read_commmitted also pre-
vented Glc involving only write-read dependencies.

On the other hand, our tests of Kafka, Redpanda, and
Bufstream all found write cycles analogous to phe-
nomenon GO in normal operation. One transaction’s
writes can appear in the middle of a second trans-
action’s writes. The major formalisms for Read Un-
committed generally prohibit GO, and the Kafka wiki
claims it should not occur at read_committed:

Since X2 is committed first, each partition
will expose messages from X2 before X1.

5Confluent’s documentation doubles down, claiming “[ulsing auto-commit offsets can give you ‘at-least-once’ delivery, but you must
consume all data returned... before any subsequent poll calls, or before closing the consumer.” This is clearly not possible, and
even if it were, it wouldn’t guarantee at-least-once delivery. A crash, power failure, or network partition could cause committed

records to go unprocessed.

6 Atomicity in Kafka is complicated. Consumers are allowed to seek, or can be automatically reassigned, to arbitrary offsets—even
in the middle of a transaction. Consumers using subscribe may be reassigned in between polls, causing them to skip over records.
Compaction can destroy part, but not all, of a transaction’s records. We aren’t sure whether a call to poll can stop short of the

end of a transaction, and so on.

7As we show later in this report, neither Kafka nor Bufstream actually ensure these invariants, thanks to a flaw in Kafka’s trans-

action protocol.

https://buf.build/docs/bufstream/kafka-compatibility/conformance
https://buf.build/docs/bufstream/kafka-compatibility/conformance
https://jepsen.io/analyses/redpanda-21.10.1
https://jepsen.io/analyses/redpanda-21.10.1
https://docs.confluent.io/platform/current/installation/configuration/producer-configs.html#acks
https://docs.confluent.io/platform/current/installation/configuration/producer-configs.html#enable-idempotence
https://docs.confluent.io/kafka/design/delivery-semantics.html#exactly-once-support
https://docs.confluent.io/platform/7.7/installation/configuration/consumer-configs.html#enable-auto-commit
https://docs.confluent.io/platform/current/clients/consumer.html#offset-management-configuration
https://docs.confluent.io/platform/current/clients/consumer.html#offset-management-configuration
https://developer.confluent.io/courses/architecture/transactions/
https://jepsen.io/analyses/bufstream-0.1.0/kafka-transactions.jpg
https://jepsen.io/analyses/redpanda-21.10.1#discussion
https://kafka.apache.org/38/documentation.html
https://kafka.apache.org/38/documentation.html
https://www.confluent.io/blog/transactions-apache-kafka/
https://www.confluent.io/blog/exactly-once-semantics-are-possible-heres-how-apache-kafka-does-it/
https://cwiki.apache.org/confluence/display/KAFKA/Transactional+Messaging+in+Kafka
https://cwiki.apache.org/confluence/display/KAFKA/KIP-98+-+Exactly+Once+Delivery+and+Transactional+Messaging
https://cwiki.apache.org/confluence/display/KAFKA/KIP-98+-+Exactly+Once+Delivery+and+Transactional+Messaging
https://docs.google.com/document/d/11Jqy_GjUGtdXJK94XGsEIK7CP1SnQGdp2eF0wSw9ra8/edit#heading=h.xq0ee1vnpz4o
https://developer.confluent.io/learn/kafka-transactions-and-guarantees/
https://developer.confluent.io/learn/kafka-transactions-and-guarantees/
https://kafka.apache.org/0110/javadoc/index.html?org/apache/kafka/clients/producer/KafkaProducer.html
https://www.confluent.io/blog/exactly-once-semantics-are-possible-heres-how-apache-kafka-does-it/
https://docs.confluent.io/platform/current/installation/configuration/consumer-configs.html?#isolation-level
https://pmg.csail.mit.edu/papers/icde00.pdf
https://pmg.csail.mit.edu/papers/icde00.pdf
https://cwiki.apache.org/confluence/display/KAFKA/Transactional+Messaging+in+Kafka
https://docs.confluent.io/platform/current/clients/consumer.html#offset-management

Nevertheless, all three systems exhibited GO both at
read_uncommitted and read_committed. Either the
documentation is wrong or Kafka’s transaction isola-
tion is broken. We identified this problem in our 2022
Redpanda analysis, but it remains unaddressed.®

Moreover, our tests show that Kafka, Redpanda, and
Bufstream, even at read_committed, allow a different
form of Glc proscribed by Read Committed. Specif-
ically, they allow cycles of transactions linked by at
least one write-write dependency. For instance, trans-
action 7} can write a to topic-partition P before T,
writes b to P. Then T can read b, forming a cycle.
Kafka’s documentation still declines to state whether
this should be legal.

Finally, a word about producer identifiers. Users can
provide a client ID, which is helpful for logging but
has no semantic effects. Producers also have an in-
ternal producer ID, which is used to de-duplicate sent
records. Third, producers have a user-specified ¢trans-
actional ID,° which identifies a logical producer across
multiple client instances. When a logical producer
crashes and restarts, it provides its transactional ID
to the server, which increments an epoch associated
with that ID. Transactional writes from older epochs
are rejected.

2 Test Design

We tested Bufstream 0.1.0 through 0.1.3, including
several release candidate builds. We based our Buf-
stream test harness on Jepsen’s previous work on Red-
panda and Kafka. We used the Jepsen testing library
and the Java Kafka Client at version 3.8.0. Since Buf-
stream implements the Kafka API, we were able to
reuse much of the Redpanda/Kafka test as a library.

We ran our tests on three to five Debian Bookworm
nodes, both as LXC containers and EC2 VMs. We
reserved one node for eted, one for Minio (an S3-
compatible object store), and the remainder for Buf-
stream agents. Producers, consumers, and admin
clients were always initialized with a single node
for bootstrap_servers, but we did not interfere with
smart client discovery: clients could talk to any node
freely. As with all smart clients, this may have re-
duced our chances to observe safety violations.

All consumers shared a single consumer group, and
committed their offsets manually after each non-
transactional poll operation. For transactional work-
loads we gave each producer a unique transactional
ID and used send0ffsetsToTransaction for any trans-
action which performed a poll—including read-only
transactions.

We applied several configuration changes to clients
in order to achieve faster recovery during fail-
ures, and to ensure safety. Our consumers ran
with significantly shorter timeouts (generally un-
der 10 seconds), and with tunable isolation_level,

auto_offset_reset, and enable_auto_commit. Pro-
ducers also ran with shorter timeouts, and con-
figurable acks, enable_idempotence, and retries.
In general we tested with the safest possible set-
tings: auto-commit false, acks all, retries 1,000,
idempotence enabled, isolation level read_committed,
auto_offset_reset of earliest, and automatic cre-
ation of topics on the server disabled. We tested both
with and without transactions.

Like most Jepsen tests, we injected the usual suite of
faults into Bufstream: process pauses (via SIGSTOP),
crashes (via SIGKILL), clock skew (via clock_settime)
and partitions (via iptables). Because Bufstream
comprises three distinct subsystems, we designed new
subsystem-aware DB automation, client, and fault in-
jection tools for Jepsen. This allowed us to target
faults to a particular subsystem, such as just crashing
Bufstream nodes or pausing only the etcd coordinator.
We mixed these faults together in shifting combina-
tions over time, producing, say, 30 seconds of parti-
tions, 30 seconds of no faults, then Bufstream crashes
with storage pauses, and so on.

2.1 Queue

In prior work on Redpanda and Kafka we designed a
queue workload which performed sophisticated safety
analysis geared towards Kafka’s data model. That
workload is now part of the core Jepsen library, and
we updated it for use in Bufstream.

In this workload each logical process launched a pro-
ducer, a consumer, and an admin client. For concision,
we defined a logical numeric key which uniquely iden-
tified a specific topic-partition. Topics were created
dynamically on first use. Keys were selected with ex-
ponential frequency: some keys accessed quite often,
while others only infrequently. After sending a config-
urable number of records to a key, we abandoned it
and moved on to a new one.

The queue workload performed three basic kinds of
operations. The first, crash, simulated a client fail-
ure: it terminated the logical process, closing all three
clients. Jepsen would then create a fresh process with
new clients to take its place. The second class of op-
erations, subscribe or assign, updated the set of top-
ics or partitions the consumer received records from
when calling poll: either assigning a specific set of
keys (topic-partitions), or subscribing to the set of top-
ics which covered the requested keys.

The third class included txn, poll, and send opera-
tions. Each contained a sequence of poll or send
micro-operations. Those which performed only polls
or sends were labeled poll or send, rather than txn,
but their structure was otherwise identical. Each
send micro-operation sent a single value (a unique
integer) to a specific key, and returned an [offset,
value] pair, based on the offset Bufstream returned.
Each poll micro-operation called consumer.poll once,

8Specifically, see Write Cycles, Transaction Isolation, and Exactly-Once Semantics.

9Not a transaction!

https://strimzi.io/blog/2023/05/03/kafka-transactions/
https://www.confluent.io/blog/transactions-apache-kafka/
https://www.confluent.io/blog/transactions-apache-kafka/
https://github.com/jepsen-io/bufstream/tree/f1706313f171a69e9497743956aabcd131a5b248
https://github.com/jepsen-io/bufstream/tree/f1706313f171a69e9497743956aabcd131a5b248
https://jepsen.io/analyses/redpanda-21.10.1
https://jepsen.io/analyses/redpanda-21.10.1
https://github.com/jepsen-io/jepsen
https://docs.confluent.io/kafka-clients/java/current/overview.html
https://github.com/jepsen-io/redpanda
https://min.io/
https://github.com/jepsen-io/redpanda/blob/71becb5d5811396d81ef6dedd22f3e64ea2cdc80/src/jepsen/redpanda/client.clj#L114-L115
https://github.com/jepsen-io/redpanda/blob/cf66299d62bb3595c69d558c930419475e7c672d/src/jepsen/redpanda/workload/queue.clj#L765-L768
https://github.com/jepsen-io/redpanda/blob/cf66299d62bb3595c69d558c930419475e7c672d/src/jepsen/redpanda/workload/queue.clj#L669-L675
https://github.com/jepsen-io/redpanda/blob/cf66299d62bb3595c69d558c930419475e7c672d/src/jepsen/redpanda/workload/queue.clj#L669-L675
https://github.com/jepsen-io/redpanda/blob/cf66299d62bb3595c69d558c930419475e7c672d/src/jepsen/redpanda/workload/queue.clj#L339-L348
https://github.com/jepsen-io/redpanda/blob/cf66299d62bb3595c69d558c930419475e7c672d/src/jepsen/redpanda/client.clj#L83C45-L105C1
https://github.com/jepsen-io/redpanda/blob/cf66299d62bb3595c69d558c930419475e7c672d/src/jepsen/redpanda/client.clj#L146-L159
https://github.com/jepsen-io/bufstream/blob/f1706313f171a69e9497743956aabcd131a5b248/src/jepsen/bufstream/cli.clj#L327-L337
https://github.com/jepsen-io/bufstream/blob/f1706313f171a69e9497743956aabcd131a5b248/src/jepsen/bufstream/cli.clj#L327-L337
https://github.com/jepsen-io/jepsen/blob/ce07779ca3b81feb8553276581faa73d963a95b7/jepsen/src/jepsen/role.clj
https://github.com/jepsen-io/bufstream/blob/f1706313f171a69e9497743956aabcd131a5b248/src/jepsen/bufstream/nemesis.clj#L78-L103
https://jepsen.io/analyses/redpanda-21.10.1
https://github.com/jepsen-io/redpanda/blob/cf66299d62bb3595c69d558c930419475e7c672d/src/jepsen/redpanda/workload/queue.clj
https://github.com/jepsen-io/jepsen/blob/ce07779ca3b81feb8553276581faa73d963a95b7/jepsen/src/jepsen/tests/kafka.clj
https://github.com/jepsen-io/redpanda/blob/cf66299d62bb3595c69d558c930419475e7c672d/src/jepsen/redpanda/workload/queue.clj#L697
https://github.com/jepsen-io/redpanda/blob/cf66299d62bb3595c69d558c930419475e7c672d/src/jepsen/redpanda/workload/queue.clj#L689-L694
https://github.com/jepsen-io/redpanda/blob/cf66299d62bb3595c69d558c930419475e7c672d/src/jepsen/redpanda/workload/queue.clj#L689-L694
https://github.com/jepsen-io/redpanda/blob/cf66299d62bb3595c69d558c930419475e7c672d/src/jepsen/redpanda/workload/queue.clj#L735-L779
https://jepsen.io/analyses/redpanda-21.10.1#write-cycles-8
https://jepsen.io/analyses/redpanda-21.10.1#transaction-isolation
https://jepsen.io/analyses/redpanda-21.10.1#exactly-once-semantics

and returned a map of keys to sequences of [offset,
value] pairs observed for that key. For example:

[[:poll {1 [[2 3] [4 511}1]
[:send 6 [7 8]]

This transaction polled key 1 and received two records
back: at offset 2, value 3; and at offset 4, value 5. Then
it sent a single record 8 to key 6, which was assigned
offset 7.

For non-transactional workloads we constrained every
send or poll operation to contain exactly one micro-
operation. For transactional workloads, we allowed
multiple micro-operations and wrapped them all in a
Kafka transaction.

To analyze histories of these operations we first con-
structed, for each key, a mapping of offsets to sets of
values observed at that offset, either via send or poll.
If we observed multiple values at a single offset, we
called it an inconsistent offset. Since every value was
unique within a key, we also expected to observe each
value at most once. If we observed the same value at
multiple offsets, we called that a duplicate error.

If our mapping between a key’s values and offsets was
bijective, we could construct a total order over values.
This order might not cover all values: calls to send and
poll might not have returned offsets. Nor could we
necessarily tell which offset an indeterminate, unob-
served send might have produced. Moreover, not every
offset contained a value: like Kafka, Bufstream uses
some log offsets to store transaction metadata. We
therefore collapsed our sparse offset logs into a dense
version order which mapped each value to a unique
index 0,1, 2,

From this version order we looked for several addi-
tional errors, which came in symmetric flavors. We
checked subsequent pairs of send micro-operations,
and subsequent pairs of polls as well, to see if the
offsets for their values were strictly monotonic and
did not skip over intermediate indices. We looked for
non-monotonic or skipped offsets both within a sin-
gle transaction and between successive transactions
by the same process.

For aborted reads, we searched for any poll which re-
turned a value sent by a failed operation. We veri-
fied that transactions never observed their own writes,
even if they later committed: we called this phe-
nomenon pre-committed read.

When Bufstream confirmed receipt of a record but that
record was never observed, we called that record lost
or unseen. Lost records were those where some poller
observed a higher offset. Since consumers start at a
known-consumed offset and proceed linearly, it should
be impossible to poll index n unless some poller has
already seen index n — 1, and by induction, all lower
indices.'?

Typically, a small tail of the log has just been writ-
ten but has not yet been polled. After the main
body of the test, we ceased transactions, resolved all
faults, waited for recovery, then began a final reads

10We say index, rather than offset, because offsets are sparse.

phase. Each process assigned its consumer to every
topic-partition, rewound to offset 0, and polled until
it reached the highest offset known to have been writ-
ten to that partition. If our final read phase timed
out, leaving some acknowledged records unobserved,
we called those records unseen.

2.2 Abort

Following unexpected results from the queue work-
load, we designed an abort workload which aborted
transactions and kept track of which offsets are polled.
We limited each topic to a single partition, process,
producer, and consumer. Each process would create
a new topic, subscribe to it, then perform a series of
transactions against that topic, each involving a sin-
gle poll and a variable number of sends. Once one of
those transactions had polled some records, the pro-
cess shifted to intentionally aborting transactions. Af-
ter some time, the process returned to committing
transactions.

We examined the offsets returned by polls after an
aborted transaction, and classified them into four cat-
egories. An advance meant that the next transaction
began its polls at an offset higher than the last one
polled in the previous, aborted transaction. A rewind
meant that the next transaction started polling at
the same offset the aborted transaction started at. A
rewind-further meant that it started at some earlier
offset. Any other behavior we called other.

3 Bufstream Results

We begin with five issues in Bufstream proper, from
liveness failures to duplicate offsets and data loss.

3.1 Stuck Consumers (#1)

In 0.1.0 through 0.1.3-rc.8 our final read phase often
stalled. Calls to consumer.poll() would return imme-
diately with no records, even though thousands of ac-
knowledged records remained in the log. This would
continue for tens of seconds to over an hour, until ei-
ther the test gave up waiting or Bufstream decided to
deliver records to consumers again. This weakened
our tests: those unseen records may have had safety
issues, but without observing them we had no way to
tell.

For instance, this test run sent 691 acknowledged
records in the first 120 seconds, then shifted to final
reads. At that time, 40 of those acknowledged writes
had never been observed by any poller. This situation
persisted for over an hour as calls to consumer.poll()
repeatedly returned no results. Finally, the test timed
out.

https://github.com/jepsen-io/redpanda/blob/cf66299d62bb3595c69d558c930419475e7c672d/src/jepsen/redpanda/workload/queue.clj#L434-L470
https://github.com/jepsen-io/jepsen/blob/ce07779ca3b81feb8553276581faa73d963a95b7/jepsen/src/jepsen/tests/kafka.clj#L907-L998
https://github.com/jepsen-io/jepsen/blob/ce07779ca3b81feb8553276581faa73d963a95b7/jepsen/src/jepsen/tests/kafka.clj#L1454-L1479
https://github.com/jepsen-io/jepsen/blob/ce07779ca3b81feb8553276581faa73d963a95b7/jepsen/src/jepsen/tests/kafka.clj#L993-L998
https://github.com/jepsen-io/jepsen/blob/ce07779ca3b81feb8553276581faa73d963a95b7/jepsen/src/jepsen/tests/kafka.clj#L2226-L2338
https://github.com/jepsen-io/jepsen/blob/ce07779ca3b81feb8553276581faa73d963a95b7/jepsen/src/jepsen/tests/kafka.clj#L2226-L2338
https://github.com/jepsen-io/jepsen/blob/ce07779ca3b81feb8553276581faa73d963a95b7/jepsen/src/jepsen/tests/kafka.clj#L1005-L1017
https://github.com/jepsen-io/jepsen/blob/ce07779ca3b81feb8553276581faa73d963a95b7/jepsen/src/jepsen/tests/kafka.clj#L1005-L1017
https://github.com/jepsen-io/jepsen/blob/ce07779ca3b81feb8553276581faa73d963a95b7/jepsen/src/jepsen/tests/kafka.clj#L1077-L1142
https://github.com/jepsen-io/redpanda/blob/cf66299d62bb3595c69d558c930419475e7c672d/src/jepsen/redpanda/workload/abort.clj
https://s3.amazonaws.com/jepsen.io/analyses/bufstream-0.1.0/0.1.3-rc2-unseen.zip

queue txn rc assign acks=all refries=1000 aor=earliest auto-topics=false idem=true clock kil partition, pause

Unseen messages

0 500 1000 1500 2000

Time (s)

2500 3000 3500 4000

In other cases consumers would get stuck waiting for
thousands of unseen records. Then after hundreds of
seconds—for no apparent reason—Bufstream would
rapidly produce the remaining values. We saw this
behavior in all kinds of situations, including healthy
clusters, but it was most pronounced with faults.

Bufstream made two patches in 0.1.3-rc.6 to help
with this issue. First, when restarted, a Bufstream
node could sometimes return stale, cached values for
the last stable offset and high watermark.!’ This
caused some client libraries to stall, assuming no later
records were available (#1). Refreshing the cache on
startup resolved this issue. We discuss the second
patch (#3) later in this report, as it also had safety con-
sequences.

3.2 Stuck Producers & Consumers (#2)

Unfortunately we continued to see regular issues with
unseen writes on 0.1.3-rc.6, in response to pauses,
crashes, or partitions affecting the coordinator, stor-
age, or Bufstream nodes. In some cases, a coordina-
tor pause could cause every Bufstream node to enter
a state where the process was running, but clients
would time out waiting for calls to InitProducerlId.
In other cases calls to 1listOffsets would fail with
messages like node 2008741112 being disconnected
or, alternatively because they timed out waiting for
a node assignment. Calls to poll would complete but
return no results. Killing and restarting Bufstream
nodes resolved these issues. We call these metastable
failures: a brief interruption in (e.g.) connectivity to
the coordinator could cause long-lasting partial (or to-
tal!) unavailability in Bufstream agents.

Bufstream uses etcd leases to keep track of active Buf-
stream agents. Each agent subscribed, via its eted
client, to updates affecting a set of leased keys. De-
spite setting long timeouts, brief pauses or partitions
caused etcd to delete keys tied to an agent’s lease, but
updates reflecting those deletions were not necessarily
relayed by the client to the agent itself. In essence, an
agent would be unaware that it had lost its lease. The
Bufstream team added additional polling logic to work
around this problem, and unseen writes were largely
resolved by 0.1.3-rc.8.

3.3 Spurious Zero Offsets (#3)

In versions 0.1.0 through 0.1.3-rc.2, a sent value could
be assigned offset 0 (even if offset 0 had already been
assigned far earlier in the test), then appear at a
higher, more reasonable offset. Only the sender ob-
served offset zero; pollers always observed the higher
offset. This occurred when either etcd or Bufstream
paused, or crashed, or a network partition occurred
between the two.

Consider this two-minute test run with a single Buf-
stream node, wherein we induced brief pauses in the
eted process. Six writes were assigned offset 0, then
appeared at a second, higher offset. On key 6, value
26 was assigned offset 0 on send, then appeared at off-
set 25 in polls. On key 9, 224 was assigned offset 0,
then appeared at 223, and so on. Our checker reported
these as duplicates:

:duplicate
{:count 6,
cerrs [{:key 6,
:value 26,
:count 2,
:offsets [0 25]},
{:key 9,
:value 224,
:count 2,
:offsets [0 223]},
{:key 9,
:value 69,
:count 2,
:offsets [0 661},
.13

Key 9 actually had five values at offset 0: value 1
(which was stable), 67, 68, 69, and 224. This caused
our checker to report inconsistent offsets:

:inconsistent-offsets
{:count 3,
rerrs [{:key 6,
:offset O,
:values #{1 26}},
{:key 8,
:offset O,
:values #{1 110}},
{:key 9,
:offset O,
:values #{1 67 68 69 224}}1}
We could reproduce this behavior readily—it occurred
roughly every five minutes. However, Bufstream ini-
tially struggled to reproduce it.

This issue was caused by Bufstream omitting a field
from the error responses sent to clients. Imagine
that Bufstream sent a message to eted to commit a
new record in the log, and etcd processed that re-
quest. However, due to a process pause or network
partition, Bufstream might time out waiting for a re-
sponse from eted, and send an error back to the client.
While Bufstream’s response included an error code, it

"The high watermark marks the prefix of the log known to be fully replicated and durable.

https://s3.amazonaws.com/jepsen.io/analyses/bufstream-0.1.0/0.1.3-rc6-hung.zip
https://s3.amazonaws.com/jepsen.io/analyses/bufstream-0.1.0/0.1.3-rc6-hung-2.zip
https://s3.amazonaws.com/jepsen.io/analyses/bufstream-0.1.0/0.1.3-rc6-hung-3.zip
https://etcd.io/docs/v3.4/learning/api/#lease-api
https://s3.amazonaws.com/jepsen.io/analyses/bufstream-0.1.0/0.1.0-inconsistent.zip

did not set the offset for the sent record to the spe-
cial value -1, which some clients relied on as a sig-
nal of an error. Consequently, the official Java client
we used in our tests interpreted this error as a suc-
cessful response with offset 0. Bufstream’s test suite
used Franz-go, which interpreted these messages as
errors. This meant that Bufstream’s test suite did not
encounter this issue.

Bufstream fixed this issue in version 0.1.3-rc.6, and we
have not observed it since.

3.4 Lost Transaction Writes (#4)

Version 0.1.2 exhibited frequent write loss. Records
written as a part of a committed transaction could van-
ish, never to be seen again. Readers would simply skip
over those records as if they had never existed. For ex-
ample, consider this test run. In just 100 seconds and
6,761 write transactions, 240 records written by com-
mitted transactions were lost. Key 5, for instance, had
a successful write of value 141:

{:type :ok,
:process 7,
:f :send,
:value [[:send 11 [83 48]]
[:send 5 [274 141111}

Since this transaction committed successfully, we
know that key 5 should have stored value 141 at offset
274. However, every call to consumer.poll() would
skip over that offset, returning values like:

[[272 140]
[273 142]

[277 144]
[278 145]
[282 146]
]

This behavior happened regularly in healthy clusters,
even with just a single Bufstream node. It was caused
by a new concurrency safety mechanism added in 0.1.2
to mitigate the lack of idempotence in Kafka’s trans-
action protocol. Bufstream nodes assigned a unique
number to each transaction performed by a producer
within a given epoch, allowing Bufstream to safely
retry some internal operations. However, a bug in the
logic for tracking transaction numbers caused some
transaction commits to be erroneously ignored when
multiple transactions were committed across multiple
epochs. This caused transactions which appeared to
commit to actually abort, or vice versa.

Bufstream’s internal integration and unit tests ini-
tially missed this bug—we only caught it with the
Jepsen test suite because of our choice of an unusually
low (one second) transaction timeout. Luckily we iden-
tified the problem within a few hours of 0.1.2’s release.
Bufstream took action to prevent customers from up-
grading to 0.1.2, and none did. The issue was fixed in
0.1.3-rc2.

3.5 Lost Writes Due to Server-Side Filtering (#5)

In version 0.1.3-rc.8, we regularly found short win-
dows of write loss in response to minor faults, like
pausing a Bufstream process or the coordinator, or a
partition between the two. Data loss occurred both
with and without transactions. Take this five-minute
test run in which 22 out of 16,770 records were ac-
knowledged, but never polled by any consumer. On
key 12, value 663 was written at offset 662:

{:type :ok,
:process 38,
:f :send,
:value [[:send 12 [662 663111}

However, every poller skipped over value 663 (and 664,
which was also acknowledged). They read 665, then
missed 666, 667, and so on:

{:type :ok,
:process 143,
:f :poll,
:value [[:poll
{...
12 [... [660 661]
(661 662]
[664 665]
(671 672]
[677 678]
..-1311%

Sometimes records would be visible to pollers for a
time, then missing from later polls. In this test run
with process crashes, Bufstream acknowledged the
writes of values 101 through 106 at roughly 1.37 sec-
onds into the test. These records were visible to pollers
until 1.88 seconds. After that, pollers simply skipped
over the records as if they had never existed.

To work around a bug in a popular Kafka web
GUI, Bufstream introduced logic in 0.1.3-rc.8 to more
strictly limit the size of responses to the fetch API.
However, a bug in that filtering logic caused Buf-
stream to hide records from some lagging consumers—
which manifested as write loss. Bufstream fixed this
issue in 0.1.3-rc.12.

4 Kafka Results

In the course of our research we uncovered several is-
sues with the Kafka Java client, documentation, and
protocol design. We present four of these issues here.
These affect Kafka, Bufstream, and presumably any
Kafka-compatible system.

https://github.com/twmb/franz-go
https://s3.amazonaws.com/jepsen.io/analyses/bufstream-0.1.0/0.1.2-lost-write.zip
https://s3.amazonaws.com/jepsen.io/analyses/bufstream-0.1.0/0.1.3-rc.8-write-loss.zip
https://s3.amazonaws.com/jepsen.io/analyses/bufstream-0.1.0/0.1.3-rc.8-write-loss.zip
https://s3.amazonaws.com/jepsen.io/analyses/bufstream-0.1.0/0.1.3-rc.8-int-poll-skip.zip

4.1 A Misleading Error Message (KIP-588)

During our testing we encountered frequent errors
like ProducerFencedException: There is a newer
producer with the same transactionalld which
fences the current one. This was particularly vex-
ing in tests where every producer received a unique
transactional ID. We spent a good deal of time verify-
ing that producers were initialized at most once, that
data from past runs was not leaking into the present,
and so on. Finally, the Bufstream team identified KIP-
588, which notes that a ProducerFencedException is
also thrown for a transaction timeout:

When the producer goes back online and at-
tempts to proceed, it will receive the exact
ProducerFenced even though a conflicting
producer doesn’t exist.

Kafka’s Java client uses a dedicated TimeoutException

Further, since consumer progress is
recorded as a write to the offsets topic, the
above capability is leveraged to enable ap-
plications to batch consumed and produced
messages into a single atomic unit, ie. a set
of messages may be considered consumed
only if the entire ‘consume-transform-
produce’ executed in its entirety.

Confluent’s Kafka design documentation goes on to
say:

If the transaction is aborted, the con-
sumer’s position reverts to its old value
and you can specify whether output topics
are visible to other consumers using the
isolation_level property.

It makes sense that consumers should rewind on abort.
After all, aborting a transaction in any system gener-
ally undoes its effects. More critically, Kafka users
typically want at-least-once delivery—advancing to

for most timeouts, but throws ProducerFencedExceptioniter offsets could mark records from the aborted

for this particular kind of timeout instead. When this
happens, the error message lies to the user, asserting
a second instance of the producer exists when none
actually does. KIP-588 has been open for two years;
we recommend the Kafka team change this error mes-
sage.

4.2 Closing a Consumer Can Block Indefinitely
(KAFKA-17734)

Our tests against both Bufstream and Kafka got stuck
every few hours thanks to a bug in the Java client.
Calls to Consumer.close () block on network IO by de-
fault. There is a timeout parameter which is supposed
to prevent calls to close() from blocking indefinitely,
but it doesn’t work. Neither does spawning a separate
thread specifically to call consumer . wakeup (), which is
intended to safely interrupt a consumer stuck in IO.

Long-running programs should be robust to network
errors. This means they should be able to reliably
tear down clients and their associated resources—
connections, threads, allocated memory, and so on—in
a reasonable amount of time. We filed KAFKA-17734
to track this issue.

4.3 Unpredictable Consumer Offsets After
Transaction Failure (KAFKA-17582)

Kafka’s official documentation is largely silent about
the intended behavior for consumer offsets when a
transaction fails to commit. Should the consumer
rewind, such that the next transaction’s polls begin
with the first records observed by the aborted transac-
tion? Or should it continue advancing, polling subse-
quent records? The original transaction proposal, KIP-
98, says:

transaction as committed even though they had never
been processed. In fact the official Java client does
rewind, but only sometimes.

We first encountered this behavior in the queue work-
load, where it manifested as write loss during a vari-
ety of faults, both with Bufstream and Kafka. We de-
signed the abort workload to follow up and found that
even in healthy clusters, aborts led to unpredictable
outcomes. For instance, here are results from a five-
minute abort test with no fault injection. Most pairs
of transactions advanced to later offsets, but some re-
wound to earlier ones. Some rewound to the start of
the transaction, and others rewound even further. All
rewinds were associated with a rebalance event, and
all advances had no rebalances.

{[:advance :none] 17048,
[:rewind-further :rebalance] 1745,
[:rewind :rebalance] 4763}

For example, process 0, interacting with topic-
partition t374, aborted a transaction which polled
records 12 through 14. Then it went on to poll and
commit later records. Offsets 12 through 17 were ef-
fectively lost.?

{:process 0,

:type :fail,

. f :poll,

:value {:topic "t374",
:offsets [12 14 15 17],
:abort? truel}}

{:process 0,

:type 1ok,

. f :poll,

:value {:topic "t374",

:offsets [18 19 21 23]}}

On the other hand, if a rebalance occurred con-
sumers could rewind to earlier offsets, preventing data
loss. For example, process 15, consuming from topic-
partition t1208, was reassigned to that same topic.

2Throughout this work we omit some fields (e.g. timestamps, operation indices, etc.) from records for concision and clarity.

https://cwiki.apache.org/confluence/display/KAFKA/KIP-588%3A+Allow+producers+to+recover+gracefully+from+transaction+timeouts
https://cwiki.apache.org/confluence/display/KAFKA/KIP-588%3A+Allow+producers+to+recover+gracefully+from+transaction+timeouts
https://issues.apache.org/jira/browse/KAFKA-17734
https://kafka.apache.org/documentation/
https://kafka.apache.org/38/javadoc/org/apache/kafka/clients/consumer/KafkaConsumer.html
https://cwiki.apache.org/confluence/pages/viewpage.action?pageId=66854913#KIP98ExactlyOnceDeliveryandTransactionalMessaging-TransactionalGuarantees
https://cwiki.apache.org/confluence/pages/viewpage.action?pageId=66854913#KIP98ExactlyOnceDeliveryandTransactionalMessaging-TransactionalGuarantees
https://web.archive.org/web/20240908235227/docs.confluent.io/kafka/design/delivery-semantics.html
https://s3.amazonaws.com/jepsen.io/analyses/bufstream-0.1.0/kafka-subscribe-rollback.zip
https://s3.amazonaws.com/jepsen.io/analyses/bufstream-0.1.0/kafka-abort.zip
https://s3.amazonaws.com/jepsen.io/analyses/bufstream-0.1.0/kafka-abort.zip

That rebalance event reset the consumer’s position
from offset 5 to offset 0, causing it to rewind further
than the most recent aborted transaction:

{:process 15,

:type :fail,
. f :poll,
:value {:topic "t1208",

:abort? true,
:offsets [4]1}}
{:process 15,

:type :ok,
. f :poll,
:value {:topic "t1208",

:abort? true,
roffsets [0 1 2 4]},
:rebalance-log
{:during
[{:type :assigned,
:partitions [{:topic "t1208",
:partition 0}11}],
:before []1}}

We opened KAFKA-17582 to ask for clarification, and
learned that this behavior is intentional. Consumers
continue advancing, unless they happen to be rebal-
anced, in which case they might rewind to an arbitrary
point—whatever happens to be committed. Users are
supposed to manually rewind the consumer’s position
on transaction abort. Indeed, one of Kafka’s demon-
stration programs includes a rewind method for ex-
actly this reason.

This directly contradicts Confluent’s documentation.
It also runs contrary to KIP-98’s statement that “a set
of messages may be considered consumed only if the
entire ‘consume-transform-produce’ executed in its en-
tirety.” KIP-98’s example code contains no rewind,
and we could not locate any documentation guiding
users to rewind by hand. We suggested that Kafka
document this behavior, and consider changing con-
sumers to rewind by default on transaction abort. We
also updated our queue workload to explicitly rewind
consumers.

4.4 Write Loss, Aborted Reads, Torn
Transactions (KAFKA-17754)

In Bufstream 0.1.0 through 0.1.3 we observed aborted
read, lost writes, and atomicity violations with as lit-
tle as pausing or crashing the Bufstream process, or
the coordinator, or a network partition. These behav-
iors led us to a fundamental flaw in the Kafka trans-
action protocol. For example, take this queue test of
version 0.1.3-rc.9. The test harness executed the fol-
lowing transaction, but aborted it intentionally:

{:type :fail,

:process 76,

. f :txn,

:value [[:send 5 [653 424]]
[:send 17 [1360 926]]
[:poll {}]
[:send 17 [1382 927111,

.error

{:type :abort,
:abort-ok? true,
:tried-commit? false,
:definite? true,
:body-error {:type :intentional-abort}}}

Process 76 selected the unique transactional ID

jt1234 on initialization. From packet captures and

Bufstream debug logs, we see jt1234 used producer

ID 233, submitted all four operations, then sent an

EndTxn request with committed = false, which de-

notes a transaction abort. However, fifteen separate

calls to pol1 () observed this transaction’s write of 424

to key 5—a clear case of aborted read. Even stranger,

no poller observed the other writes from this transac-
tion: key 17 apparently never received values 926 or

927. Why?

Close inspection of the packet capture, combined with
Bufstream’s logs, allowed us to reconstruct what hap-
pened. A few transactions prior, process 76 began
a transaction which sent 1018 to key 15. It sent an
EndTxn message to commit that transaction to node n3.
However, it did not receive a prompt response. The
client then quietly sent a second commit message to
n4, which returned OK, and the test harness’s call to
commitTransaction completed successfully. The pro-
cess then began and intentionally aborted a second
transaction, which completed OK. So far, so good.

Client n3 n4 n5

Produce 1018 to key 15

ok
[send 15 1018] ‘B%
<

Commit

Not shown: various
| Metadata & | | |
| FindCoordinator requests | | |
to n4/n5, followed by
another transaction

Produce 424 to key 5

Transaction
chopped
in half!

Produce 926 to key 17
Lok

P

roduce 927 to key 17

[send 5 424]
[send 17 926]
[send 17 927]

Then process 76 began a third, problematic transac-
tion. It sent 424 to key 5 and added new partitions
to the transaction. Just after accepting record 424,
node n3 received the delayed commit message from
two transactions ago. This committed the current

https://issues.apache.org/jira/browse/KAFKA-17582
https://github.com/apache/kafka/blob/2.5/examples/src/main/java/kafka/examples/ExactlyOnceMessageProcessor.java#L132
https://s3.amazonaws.com/jepsen.io/analyses/bufstream-0.1.0/0.1.3-rc.9-g1a-2.zip
https://s3.amazonaws.com/jepsen.io/analyses/bufstream-0.1.0/0.1.3-rc.9-g1a-2.zip
https://kafka.apache.org/protocol#The_Messages_EndTxn

transaction, effectively tearing it in half. The first half
(sending 424 to key 5) was committed and visible to
pollers. The second half (sending 926 and 927 to key
17) implicitly began a second transaction, which was
then aborted by the client.

This suggests a fundamental problem in the Kafka
transaction protocol. The protocol is designed to al-
low clients to submit requests over multiple TCP con-
nections and to distribute them across multiple nodes.
There is no sequence number to order requests from
the same client. There is no concept of a transac-
tion number.'> When a server receives a commit (or
abort) message, it has no way to know what trans-
action the client intended to commit. It simply com-
mits (or aborts) whatever transaction happens to be
in progress.

This means transactions which appeared to commit
could actually abort, and vice versa: we observed both
aborted reads and lost writes. It also means transac-
tions could be cut in half: a single transaction could
have some of its writes lost, and others preserved.
We don’t know a name for this anomaly. It’s clearly
a violation of atomicity, but “atomic” is a somewhat
vague term. If a reader observed some but not all of
a different transaction’s writes we would call it a frac-
tured read, but this anomaly occurs on the write path:
no (read_committed) poller will ever observe the lost
writes. We call this behavior a torn transaction.'*

What does it take to get this behavior? First, an
EndTxn message must be delayed, for instance due
to network latency, packet loss, a slow computer,
garbage collection, etc. Second, while that EndTxn ar-
row is hovering in the air, the client needs to move on
to perform a second transaction using the same pro-
ducer ID and epoch. There are several ways this could
happen.

First, users could explicitly retry committing or
aborting a transaction. The docs say they can,
and the client won’t stop them. Second, the of-
ficial Kafka Java client docs repeatedly instruct

users to call abortTransaction if an error occurs
during commitTransaction.'® Following the docu-
mentation’s example leads directly to this behav-
ior: if commitTransaction times out, one calls
abortTransaction, and there are now multiple EndTxn
messages in flight. Third, even if users try to
avoid this by only calling commitTransaction or
abortTransaction, the client’s internal retry mecha-
nism treats timeouts as retryable and sends multiple
EndTxn messages automatically. In the above example,
process 76 called commit or abort exactly once for ev-
ery transaction it ever performed, and it still hit data
loss.

We observed aborted reads and torn transactions
due to process pauses in Kafka as well, and opened
KAFKA-17754 to track the issue. Kafka’s engineers
believe KIP-890, which was motivated by hanging
transactions in Kafka, will likely fix the problem.
In brief, KIP-890 revises the transaction protocol
to bump the producer’s epoch on every transaction.
Since servers reject messages from older epochs, this
should prevent commit messages from prior transac-
tions leaking into later ones. KIP-890 was opened in
November 2022, and work is ongoing.

Bufstream has added a mechanism in 0.1.3 to re-
duce the frequency of these issues. Bufstream nodes
now use the most recently observed etcd revision—
a global, monotonically increasing integer coupled
to the system state as a whole—as a logical clock
on AddPartitionsToTxn and EndTxn messages. If an
EndTxn message attempts to commit or abort a trans-
action with a newer AddPartitionsToTxn, Bufstream
returns a non-retryable error. Of course this order is
only known once RPC messages arrive on Bufstream
nodes; it does not prevent reorderings that occur be-
tween the client and Bufstream itself. Indeed, we con-
tinue to observe aborted read, lost writes, and torn
transactions in 0.1.3. We must wait for clients to re-
solve this issue.

No Summary Event Required Fixed in

1 Stuck consumers due to lagging highest stable offset None 0.1.3-rc.6

2 Stuck producers/consumers due to etcd lease expiry Pause 0.1.3-rc.8

3 Spurious zero offsets Pause 0.1.3-rc.6

4 Lost transaction writes None 0.1.3-rc.2

5 Lost writes due to server-side filtering Pause 0.1.3-rc.12
KIP-588 Wrong error message on transaction timeout None Unresolved
KAFKA-17734 ConsumerClient.close() can block indefinitely Pause Unresolved
KAFKA-17582 Unpredictable consumer offsets after transaction failure None Unresolved
KAFKA-17754 Write loss, aborted read, torn transactions Pause Unresolved

13The Kafka protocol documentation says that EndTxn, the message which commits or aborts a transaction, has a transactional_id
field which specifies “The ID of the transaction to end.” As previously mentioned, a transactional ID identifies a set of producers,

not a transaction.
4 Cut my writes into pieces / This is commit-abort.

5The only exceptions in the docs are ProducerFencedException, OutOfOrderSequenceException, and AuthorizationException,

none of which apply here.

https://kafka.apache.org/protocol
https://kafka.apache.org/38/javadoc/org/apache/kafka/clients/producer/KafkaProducer.html
https://kafka.apache.org/38/javadoc/org/apache/kafka/clients/producer/KafkaProducer.html
https://github.com/apache/kafka/blob/8125c3da5bb6ebb35a0cb3494624d33fad4e3187/clients/src/main/java/org/apache/kafka/common/errors/TimeoutException.java#L22
https://s3.amazonaws.com/jepsen.io/analyses/bufstream-0.1.0/kafka-g1a.zip
https://issues.apache.org/jira/browse/KAFKA-17754
https://cwiki.apache.org/confluence/display/KAFKA/KIP-890%3A+Transactions+Server-Side+Defense
https://cwiki.apache.org/confluence/pages/viewpage.action?pageId=235834634
https://cwiki.apache.org/confluence/pages/viewpage.action?pageId=235834634
https://issues.apache.org/jira/browse/KAFKA-14402
https://cwiki.apache.org/confluence/display/KAFKA/KIP-588%3A+Allow+producers+to+recover+gracefully+from+transaction+timeouts
https://issues.apache.org/jira/browse/KAFKA-17734
https://issues.apache.org/jira/browse/KAFKA-17582
https://issues.apache.org/jira/browse/KAFKA-17754
https://kafka.apache.org/protocol#The_Messages_EndTxn
https://developer.confluent.io/courses/architecture/transactions/

5 Discussion

We found two liveness and three safety issues in Buf-
stream proper. Two issues (#1 and #2) involved con-
sumers or producers getting stuck, sometimes indef-
initely. One (#3) involved Bufstream returning 0
rather than -1 for a sent record which failed indef-
initely. The official Java client interpreted this re-
sponse as a success, rather than an error. Two issues
allowed the loss of committed writes due to a bug in
a concurrency control mechanism (#4) and a bug in a
filter to limit response sizes (#5). We identified both
#4 and #5 before production users were affected. As of
version 0.1.3, all five issues are resolved.

However, Bufstream continues to exhibit aborted
reads, lost writes, and torn transactions due to the
design of the Kafka transaction protocol (KAFKA-
17754). These issues cannot be resolved without
the help of the Kafka team and client implementers.
We also note three other Kafka issues, including
an incorrect error message (KIP-588), a deadlock
in ConsumerClient.close() (KAFKA-17734), and the
lack of any authoritative documentation for transac-
tion semantics (KAFKA-17671).

As always, we caution that Jepsen takes an experi-
mental approach to safety verification: we can prove
the presence of bugs, but not their absence. While
we make extensive efforts to find problems, we can-
not prove correctness. In particular, KAFKA-17754
makes it difficult to determine if there are other cases
of (e.g.) write loss in Bufstream.

5.1 Bufstream Recommendations

Bufstream users who use the official Java Kafka client
should be aware that transactions are, at present,
unsafe. Aborted transactions could actually com-
mit, committed transactions could actually abort, and
transactions could be torn in half, preserving some but
not all of their effects. Bufstream believes the Franz-
go client is less susceptible to this problem, but we
have not tested it using the same techniques as the
present work. Other clients may or may not be sus-
ceptible. While Bufstream is trying to reduce the fre-
quency of these issues, they cannot prevent them en-
tirely. That power lies with the Kafka team and client
implementers.

Bufstream users prior to 0.1.3 should be aware that
calls to producer.send() might incorrectly return a
zero offset for a record, rather than the actual offset.
They may also encounter metastable availability is-
sues where clients get “stuck.” We recommend upgrad-
ing to 0.1.3.

Bufstream’s overall architecture appears sound: re-
lying on a coordination service like eted to establish
the order of immutable chunks of data is a relatively
straightforward approach with years of prior art in
both OLTP and streaming systems. Kafka’s attention
to KIP-588, additional deployment experience, and

further testing should help identify and resolve any re-
maining safety bugs. In the meantime, we made two
small operational recommendations for Bufstream.

First, we suggested Bufstream retry a network oper-
ation that often caused clusters to crash. Bufstream
requests a shared file in storage on startup, as a safety
check designed to prevent users from accidentally run-
ning two different Bufstream clusters on top of the
same storage bucket. Bufstream exits if it can’t com-
plete this request. This caused Bufstream to crash
roughly one in thirty tests, due to 404 not found re-
sponses from storage. Bufstream has added a layer of
retries, and intends to further ameliorate this issue
by retrying indefinitely while refusing client connec-
tions. Version 0.1.3 appears significantly more robust
on startup.

Second, Jepsen suggested that Bufstream processes
try to keep running when their dependencies are un-
available. Presently, agents kill themselves when they
lose access to storage or the coordinator, and rely on
a supervisor system like Kubernetes to restart them.
This works, but it requires operators to run their own
supervisor. It may also impact performance and avail-
ability. Clients must tear down and re-open TCP con-
nections, which could create thundering-herd issues.
Bufstream processes may also need to do special work
on restarting: fetching resources from storage, warm-
ing caches, re-connecting to etcd, and so on. Generally
speaking, services should try to keep running when
their dependencies become unavailable—the service
can offer backpressure, advise clients of system status,
and generally recover more gracefully. Bufstream has
added additional retry logic for etcd, but as of 0.1.3,
still requires constant supervision to stay online. We
also recommend users verify that they have a process
supervisor in place, and test that it works correctly
(rather than giving up) during prolonged outages.

5.2 Kafka Needs Transaction Docs

Kafka’s official documentation says almost nothing
about transactions, leaving users to piece together be-
havior from a maze of vague, confusing, and contra-
dictory sources. We encouraged the Kafka team to
write an official, centralized, easy-to-find document
which lays out the intended semantics of transactions:
KAFKA-17671. This document should specify exactly
what users must do to use transactions safely, and
what invariants they can expect in return. For in-
stance, it should describe the rules for offsets visible
to a single producer or consumer:

¢ When will a consumer observe monotonically in-
creasing offsets?

* When will a consumer skip over acknowledged
records?

¢ Is this behavior different within a single call to
poll, versus between two subsequent calls?

¢ Can a rebalance take effect in the middle of a
transaction? How do rebalances affect transac-
tion semantics?

10

https://www.infoq.com/articles/Architecture-Datomic/
https://issues.apache.org/jira/browse/KAFKA-17671

* When will records sent by a producer to a single
topic-partition have monotonically increasing off-
sets?

e When will those offsets be interleaved with
writes from other producers?

* For both consumers and producers, how do these
behaviors differ within a transaction vs. between
two subsequent transactions on the same client?

This document should also explain the isolation prop-
erties of transactions:

® When is GO (write cycle) legal?

¢ When is Gla (aborted read) legal?

® When is G1b (intermediate read) legal?

* When is Glc (circular information flow) legal?

* What particular cycles are prohibited, if any?
For example, are cycles composed entirely of
write-read edges proscribed?

® When is fractured read legal? That is, when can
a transaction observe some, but not all, of an-
other transaction’s effects?

¢ Is it legal to read values written inside the cur-
rent transaction?

It should describe the semantics of aborted transac-
tions:

¢ How are explicitly aborted transactions different
from those which (e.g.) crash before committing?

* Are the values and offsets returned by po11 () cor-
rect even if the transaction aborts?

* What offsets should a consumer poll after a trans-
action crashes?

e How should users navigate Kafka’s maze of
transaction errors?

¢ How should users handle errors that occur dur-
ing the transaction abort process, or during
rewind?

... and clarify other ambiguities in the existing docu-
mentation:

¢ Is the “committed position” the offset of the high-
est committed record, or the uncommitted offset
one higher?

¢ Isit safe tolet multiple transactional IDs process
records from the same topic-partitions?

We also recommend that Confluent align their safety
claims with Kafka’s behavior. Confluent repeatedly
claims that Kafka offers at-least-once delivery by de-
fault. This is untrue: enable.auto.commit = true,
and auto.offset.reset = latest allow records to be
marked “committed” despite never being processed.
Those same docs incorrectly claim that consumers
rewind offsets on transaction abort. They do not, and
this too could lead to data loss. Either the default be-
haviors should be changed, or the documentation up-
dated.

5.3 Kafka Transactions are Broken

The Kafka transaction protocol is fundamentally bro-
ken and must be revised. As we showed in KAFKA-
17754, anyone who uses the official Java Kafka client
with Bufstream, Kafka, or presumably any Kafka-
compatible system may observe aborted reads, lost
writes, and torn transactions. These break the most
basic safety guarantees Kafka transactions are sup-
posed to provide.

The crux of the problem is that Kafka’s transaction
system implicitly assumes ordered, reliable delivery
where none exists. Processes pause, networks are not
reliable, latency is non-zero, and delivery across differ-
ent TCP sockets is fundamentally unordered. Kafka’s
protocol distributes messages across different nodes
and TCP sockets by design. Clients automatically
retry messages, leading to duplicates. The protocol
includes neither a sequence number to reconstruct
the order of messages sent by a single client,'® nor
a transaction number to ensure messages affect the
right transaction.

On top of this unreliable foundation, the Kafka trans-
action protocol is an ordered state machine. Produce
and EndTxn messages add records to, commit, or abort,
whatever transaction happens to be ongoing at the
time. Producer epochs provide a logical clock, but
nothing ensures order within an epoch, and epochs
are incremented infrequently. This demonstrates the
importance of the end-to-end principle in protocol de-
sign: the client and transaction state machine must
explicitly encode and enforce ordering “at the edges,”
rather than relying on the unreliable network between
them.

KIP-890 intends to ensure a stricter order by in-
crementing the epoch on every transaction commit.
Client libraries could also help by re-initializing pro-
ducers (which bumps the epoch) when a message is
not acknowledged.

We know the official Java Kafka client is vulnerable
to this problem as of version 3.8.0. We believe Franz-
go does re-initialize on timeouts, which could mitigate
or prevent these issues. We haven’t investigated other
client libraries.

5.4 Future Work

Many users rely on the Kafka Streams API for
“exactly-once semantics,” rather than performing
transactions themselves. Future work could explore
the correctness of Streams applications.

While investigating issues like KAFKA-17754, we also
encountered unseen writes in Kafka. Owing to time
constraints we have not investigated this behavior,
but unseen writes could be a sign of hanging transac-
tions, stuck consumers, or even data loss. We are cu-
rious whether a delayed Produce message could slide
into a future transaction, violating transactional guar-
antees. We also suspect that the Kafka Java Client

6Kafka messages do include a unique correlation id, but this ID is not used for ordering. There are also sequence numbers on

Produce messages, but they do not extend to (e.g.) EndTxn.

11

https://cwiki.apache.org/confluence/display/KAFKA/KIP-1050%3A+Consistent+error+handling+for+Transactions
https://cwiki.apache.org/confluence/display/KAFKA/KIP-1050%3A+Consistent+error+handling+for+Transactions
https://docs.confluent.io/kafka/design/delivery-semantics.html
https://docs.confluent.io/platform/current/clients/consumer.html
https://developer.confluent.io/courses/architecture/transactions/
https://developer.confluent.io/courses/architecture/transactions/
http://www.bailis.org/papers/partitions-queue2014.pdf
http://www.bailis.org/papers/partitions-queue2014.pdf
https://www.researchgate.net/publication/322500050_Fallacies_of_Distributed_Computing_Explained
https://kafka.apache.org/protocol#protocol_network
https://cwiki.apache.org/confluence/pages/viewpage.action?pageId=235834631#KIP890:TransactionsServerSideDefense-Motivation
https://cwiki.apache.org/confluence/pages/viewpage.action?pageId=235834631#KIP890:TransactionsServerSideDefense-Motivation
https://en.wikipedia.org/wiki/End-to-end_principle
https://cwiki.apache.org/confluence/display/KAFKA/KIP-890%3A+Transactions+Server-Side+Defense
https://docs.confluent.io/kafka-clients/java/current/overview.html
https://github.com/twmb/franz-go
https://github.com/twmb/franz-go

may reuse a sequence number when a request times
out, causing writes to be acknowledged but silently dis-
carded. More Kafka testing is warranted.

When a rebalance event occurs, the positions of con-
sumers may shift forward or back. It is unclear what
the rules are for these rebalances. Our test suite de-
tected various cases of consumers or producers en-
countering internal (or external) non-monotonic (or
skipped) sends (or polls). However, we are unsure
when these behaviors are legal, and our checker does
not report them as outright failures. Once Kafka docu-
ments intended behavior, we would like to verify it.

Jepsen is a random process. The generators of opera-
tions, thread scheduler, network and disk IO, services
under test, and operating systems involved are all non-
deterministic. We rely on anomalies being probable
enough that they occur regularly across different, ran-
dom test runs. This is an effective way to identify and
resolve bugs that are likely to occur in real-world sys-
tems. However, it is a terrible way to explore rare be-
haviors: if an anomaly occurs once in a hundred hours
of testing, debugging and reproducing it becomes ar-
duous.

For example, we encountered a single case of non-zero
duplicate offsets on 0.1.3-rc.2. In this two-minute test
run with producer pauses, a process sent record 743
to key 9, was assigned offset 1225, and was able to
poll the record at that offset. Other pollers begged to

differ—every other process observed value 743 at off-
set 1219. We were unable to reproduce this behavior
after weeks of testing, and it could have been an er-
ror in our test harness. Lacking confidence, we opted
not to include this in our findings. A reproducible test
would have made discharging this issue significantly
easier.

Bufstream also uses Antithesis, a testing platform
which runs an entire distributed system in a deter-
ministic hypervisor and simulated network. This al-
lows perfectly reproducible tests, and also lets testers
rewind time to inspect the state of a system just be-
fore and after a bug occurred. We would like to com-
bine Jepsen’s workload generation and history check-
ing with Antithesis’ deterministic and replayable en-
vironment to make our tests more reproducible.

This work would not have been possible without the
help of the Buf team, including Jacob Butcher, Mary
Cutrali, Peter Edge, Rubens Farias, Alfred Fuller,
Arturas Lapiené, Connor Mahony, David Marby,
Chris Pine, Derek Perez, Luke Rewega, Chris Roche,
Akshay Shah, Nick Snyder, and Philip Warren. Our
thanks also to Artem Livshits and Justine Olshan for
their support in investigating Kafka behavior. Our
sincere appreciation to Irene Kannyo for her editorial
support. This report was funded by Buf Technolo-
gies, Inc. and conducted in accordance with the Jepsen
ethics policy.

12

https://s3.amazonaws.com/jepsen.io/analyses/bufstream-0.1.0/0.1.3-rc2-dup-nonzero.zip
https://s3.amazonaws.com/jepsen.io/analyses/bufstream-0.1.0/0.1.3-rc2-dup-nonzero.zip
https://antithesis.com/
https://jepsen.io/analyses/ethics
https://jepsen.io/analyses/ethics

	Background
	Client Safety
	Transactions

	Test Design
	Queue
	Abort

	Bufstream Results
	Stuck Consumers (#1)
	Stuck Producers & Consumers (#2)
	Spurious Zero Offsets (#3)
	Lost Transaction Writes (#4)
	Lost Writes Due to Server-Side Filtering (#5)

	Kafka Results
	A Misleading Error Message (KIP-588)
	Closing a Consumer Can Block Indefinitely (KAFKA-17734)
	Unpredictable Consumer Offsets After Transaction Failure (KAFKA-17582)
	Write Loss, Aborted Reads, Torn Transactions (KAFKA-17754)

	Discussion
	Bufstream Recommendations
	Kafka Needs Transaction Docs
	Kafka Transactions are Broken
	Future Work

