Capela dda5892

Kyle Kingsbury
2025-08-07

JEPSEN

Capela is an unreleased, distributed, general-purpose programming environment. Capela and Jepsen worked
together to test several development builds prior to Capela’s initial release. We report four issues in the Capela
language, including loops that did not iterate; fourteen crashes or non-fatal panics, including double-borrow
errors and corrupting allocator memory; severe performance degradation after roughly a minute of operation;
and three safety issues, including partitions ignoring their initial values, sporadically vanishing, and losing
committed writes. Most issues occurred in healthy clusters. Capela fixed two of the language issues—all others
remain under investigation. This research was funded by Capela Inc., and conducted in accordance with the

Jepsen ethics policy.

1 Background

Much of modern software involves application logic
written in some programming language, which stores
state in one or more distributed, fault-tolerant
databases. The storage system and application logic
usually represent data in different ways, requiring
additional languages to query and transform data:
SQL, stored procedures, etc. There are also usually
translation layers between application logic and stor-
age: client libraries, query builders, Object-Document
Mappers, and so on.

Capela is an unreleased, distributed, general-purpose
programming environment which aims to simplify ap-
plication development by unifying processing and stor-
age in a single distributed system. Capela hopes that
their integrated model will make programs shorter
and easier to understand for both human engineers
and Large Language Models.!

Capela programs are written in a dialect of Python,
augmented with a sophisticated type system.? Capela
allows programmers to write distributed classes
whose instances are automatically replicated and per-
sisted to disk. Method invocation is transactional,
with Strong Serializable semantics for pure functions
and those which mutate Capela state. Capela also
plans to allow functions to perform external I/O, like
making calls to HTTP services. Support for external
I/0, and its intended consistency model, are still un-
der development.

Readers familiar with distributed languages like SR,
MPD, Erlang, Oz, or Bloom will recognize elements of
Capela. As with Linda’s Tuple Spaces, Capela mod-
els distribution not in terms of message passing, but
as access to transparently distributed data structures.
Like Smalltalk and other image-based languages,
Capela persists program state directly, and allows
programs to be modified over time. Indeed, Capela
feels somewhat like an object-oriented database with
stored procedures. More recently, blockchain systems
like Ethereum have re-popularized transactional exe-
cution over replicated persistent state, viz. smart con-
tracts.

Capela is divided into partitions. Each partition is a
logically single-threaded state machine whose state is
an instance of a user-provided class. Each partition
elects a leader to coordinate writes; that partition’s
throughput is limited by the speed of a single node.
A cross-partition transaction protocol allows methods
and queries to interact with multiple partitions. Like
single-partition operations, cross-partition operations
(without external I/O) should ensure Strong Serializ-
ability.

Methods on Capela objects can be called via an HTTP
JSON API, which provides arguments and returns the
method’s return value. For example, consider a class
which provides a simple map of string keys to integer
values:

1Large Language Models (LLMs), often referred to as “AI”, are statistical models which predict plausible completions of a string of
tokens, like an English sentence or a program. When developers generate code with assistance from LLMs, they are often limited
by the model’s context window—the number of tokens the model can work with at once. LLMs are generally less effective on a
large codebase, because less of the code fits within the context window. Capela therefore aims to make codebases smaller and

more tractable for LLMs.

2Capela’s type system is still under development, but their plans are ambitious. Capela intends to statically analyze not only ar-
guments and return values, but also to constrain values via dependent types, and to control side effects via session types and
an effect system. Static analysis of dataflow and effects allows sophisticated optimizations. For example, Capela may be able to
prove when ordering constraints can be elided, because two pieces of code do not interact with the same state. When one variable
in a list changes due to a concurrent transaction’s update, Capela may be able to re-evaluate only the part which changed, and

SO on.

https://capela.com
https://jepsen.io/analyses/ethics
https://wiki.c2.com/?StructuredQueryLanguage
https://en.wikipedia.org/wiki/Stored_procedure
https://github.com/seancorfield/honeysql?tab=readme-ov-file#usage
https://www.doctrine-project.org/projects/doctrine-mongodb-odm/en/2.9/reference/introduction.html
https://www.doctrine-project.org/projects/doctrine-mongodb-odm/en/2.9/reference/introduction.html
https://capela.com
https://en.wikipedia.org/wiki/Large_language_model
https://www.python.org/
https://jepsen.io/consistency/models/strong-serializable
https://web.archive.org/web/20170706113422/https://www2.cs.arizona.edu/sr/language.pdf
https://www2.cs.arizona.edu/mpd/programs/tutorial.html
https://www.erlang.org/doc/system/distributed.html
https://www.ps.uni-saarland.de/Publications/documents/Vol1000.pdf
http://bloom-lang.net/
https://www.cs.unc.edu/~stotts/COMP590-059-f21/slides/linda-1994.pdf
https://wiki.c2.com/?SmalltalkLanguage
https://wiki.c2.com/?ImageBasedLanguage
https://en.wikipedia.org/wiki/Stored_procedure
https://ethereum.org/en/developers/docs/smart-contracts/
https://en.wikipedia.org/wiki/Smart_contract
https://en.wikipedia.org/wiki/Smart_contract
https://www.ibm.com/think/topics/context-window
https://typing.python.org/en/latest/spec/annotations.html
https://typing.python.org/en/latest/spec/annotations.html
https://en.wikipedia.org/wiki/Dependent_type
https://www.dcs.gla.ac.uk/~ornela/publications/DGS12.pdf
https://idiomaticsoft.com/post/2024-01-02-effect-systems/

class KV(Node):
state: Dict[str, int] =
Field(default_factory=dict)

def set(self, key: str, value: int) -> int:
self.statel[key] = value
return value

def get(self, key: str) -> Optionall[int]:
return self.state.get(key, None)

Users can call set and get by making HTTP POST re-
quests, specifying the ID of an instance of this class.
Each instance’s state map is automatically persisted
and replicated across nodes. To record in partition
11234... that country singer Kacey Musgraves has
won seven CMA awards, one might call:

POST /d/!1234.../set {"key": "Kacey Musgraves",
"value": 7}
=7

Capela engaged Jepsen early in the development pro-
cess to verify the safety and fault-tolerance properties
of their system. During our engagement, Capela had
not yet been released and had no public marketing or
documentation. Its website launched on 2025-08-06,
just prior to the release of this report. Instead, we
based our understanding of Capela’s intended guar-
antees on informal documentation and conversations
with Capela’s team. We stress that the issues we dis-
cuss in this report are typical of early, unreleased soft-
ware, and had (as of this writing) no user-facing im-
pact.

2 Test Design

We designed a test suite for Capela using the Jepsen
testing library. From 2025-04-07 through 2025-05-
07, we tested versions dda5892 (2025-04-08) through
599e9cb (2025-04-28), running on clusters of three to
five Debian nodes. We ran our clusters both in LXC
and on multiple EC2 VMs. Our Python programs were
uploaded to the local directory of each node prior to
startup.

Our test harness injected a variety of faults, including
killing and pausing processes, partial and total net-
work partitions, setting node clocks forward and back
by milliseconds to hundreds of seconds, and strobing
clocks rapidly between two times. We took snapshots
of and later restored chunks of Capela’s data files,
and also introduced random single-bit errors into data
files. In some tests we ran Capela on top of LazyF'S,
a FUSE filesystem which can forget un-fsynced data
on demand; we coupled that data loss with process
crashes to simulate power failures.

Our tests ran several different workloads, which fol-
low.

2.1 Write-Read Registers

As a simple test of Capela’s transaction semantics, we
wrote a simple key-value store backed by a single dic-
tionary. In addition to direct writes and reads on in-
dividual keys, we implemented a small transaction
system which took a list of [function, key, value]
micro-operations and applied them sequentially, re-
turning a completed transaction. For example, here
is a transaction which intends to read key 1, set key 1
to 2, then read key 1 again:

[[:r 1 nil] [:w 1 2] [:r 1 nil]

Our txn method took that transaction structure, ap-
plied it to state in Capela, and returned that same
transaction structure, filling in the values read. As-
suming the initial value of key 1 was 0:

[[:x 1 0] [:w12] [:x12]]

We used the Elle consistency checker to analyze his-
tories of these transactions. For this workload Elle
inferred partial version orders for keys by assuming
writes follow reads within a single transaction. Given
Capela’s goal of Strong Serializability, we also as-
sumed individual keys were Linearizable in recon-
structing version orders. Elle used those version or-
ders to build a transaction dependency graph, and
searched for cycles which would violate Strong Seri-
alizability.

Elle also checked for a number of non-cyclic anoma-
lies. For instance, we searched for internal anomalies
within a single transaction, like a read which failed
to observe the most recent write. We also checked for
Gla (Aborted Read), G1b (Intermediate Read), and P4
(Lost Update).

We designed two variants of this workload. The sim-
ple variant, wr, stored all data in a single partition.
A second, multi-wr, created several partitions, each
with their own dictionary, and hashed each key to a
specific partition. We submitted transactions to a sin-
gle coordinator partition, and indicated which parti-
tion each particular key belonged to. This allowed us
to test Capela’s cross-partition transaction protocol.

2.2 List Append

We designed a closely related transactional workload,
list-append. Instead of overwriting values in place,
our writes appended a unique integer element to a list
identified by some key. From the order of those ele-
ments, Elle inferred the order of transactions which
produced that version. This allowed us to infer almost
all of the write-write, write-read, and read-write de-
pendencies which must have been present in a history,
detecting additional anomalies.

As with the write-read register workloads, we wrote
both append and multi-append variants, which stored
their keys in a single partition, or in multiple parti-
tions, respectively.

https://capela.com
https://github.com/jepsen-io/capela
https://github.com/jepsen-io/jepsen
https://github.com/jepsen-io/jepsen
https://linuxcontainers.org/
https://aws.amazon.com/ec2/
https://github.com/jepsen-io/capela/tree/90ebe472f6a9d4e5590e0a10be492e6243438c9d/resources
https://github.com/jepsen-io/capela/blob/90ebe472f6a9d4e5590e0a10be492e6243438c9d/src/jepsen/capela/nemesis.clj
https://github.com/dsrhaslab/lazyfs
https://github.com/jepsen-io/capela/blob/90ebe472f6a9d4e5590e0a10be492e6243438c9d/resources/wr.py
https://github.com/jepsen-io/elle
https://jepsen.io/consistency/models/writes-follow-reads
https://jepsen.io/consistency/models/linearizable
https://jepsen.io/consistency/phenomena/g1a
https://jepsen.io/consistency/phenomena/g1b
https://jepsen.io/consistency/phenomena/p4
https://jepsen.io/consistency/phenomena/p4
https://github.com/jepsen-io/capela/blob/90ebe472f6a9d4e5590e0a10be492e6243438c9d/src/jepsen/capela/workload/wr.clj
https://github.com/jepsen-io/capela/blob/90ebe472f6a9d4e5590e0a10be492e6243438c9d/src/jepsen/capela/workload/multi_wr.clj
https://github.com/jepsen-io/capela/blob/90ebe472f6a9d4e5590e0a10be492e6243438c9d/resources/multi_wr.py
https://github.com/jepsen-io/capela/blob/90ebe472f6a9d4e5590e0a10be492e6243438c9d/resources/append.py
https://jepsen.io/consistency/dependencies
https://jepsen.io/consistency/dependencies
https://github.com/jepsen-io/capela/blob/90ebe472f6a9d4e5590e0a10be492e6243438c9d/src/jepsen/capela/workload/append.clj
https://github.com/jepsen-io/capela/blob/90ebe472f6a9d4e5590e0a10be492e6243438c9d/src/jepsen/capela/workload/multi_append.clj

2.3 Partition Set

Transactions in the write-read register and list-
append tests often failed because the partitions they
interacted with did not exist. This was particularly
surprising as Capela intended to ensure that once cre-
ated, a call to select(partition-key) would always
return that partition, rather than None.

Our partition-set workload verified this claim by per-
forming two types of operations. First, it could create
a single partition in Capela, storing a unique integer
value, and remember the key assigned to that parti-
tion. Second, the test would try to read all partitions
by issuing a select(partition-key) query for each
known partition. Once a partition was acknowledged
as created, it should appear in every read beginning
later.

2.4 Ad Hoc Queries

As we encountered bugs in the Capela language, we
built up a collection of handcrafted programs to ex-
plore behavior and serve as a regression test. We
submitted each of these programs to Capela’s /query
endpoint, which evaluates an arbitrary string of code,
and compared its return value against an expected re-
sult.

2.5 Generative Python

We also devised a small, experimental workload called
gen-py, which generates simple Python programs and
compares how each program runs in Jython (a Python
interpreter), to how it runs in Capela. We used
test.check, a property-based testing library, to gener-
ate random programs and to shrink faulty programs
to smaller examples.

We spent only one day on this workload, so it could gen-
erate only simple programs: literals, variable assign-
ments, function definitions, and function calls. Nev-
ertheless, it uncovered several unusual behaviors in
Capela.

3 Results

We begin with four issues in Capela’s Python-
compatible language. @ We then discuss fourteen
crashes or non-fatal panics, and a problem with per-
formance degradation after roughly a minute of oper-
ation. We finish with three safety errors.

Jepsen filed issues in an empty Github repository
Capela set up, with the understanding that it would
be made public before the release of this report. How-
ever, as of our scheduled publication time, the issue
tracker remained private. All issue links will return
404 errors initially, but we hope this will be resolved
shortly.

3.1 for Loops Don't (#1)

In version ebf0f3e, for loops in Capela silently failed
to evaluate their bodies. For example, consider the fol-
lowing program which appends elements from one list
to another:

acc = [0]

xs = [1,2,3]

for x in xs:
acc.append (x)

acc

When run in Python, this returns [0, 1, 2, 3]. In
Capela, it returned [0]: the loop was never evaluated.
Capela reports that they resolved this issue (#1) in ver-
sion 25¢4b96.

3.2 match is Unimplemented (#7)

Version ebf0f3e did not support Python’s match ex-
pressions, which are analogous to what many lan-
guages call switch or case. For example, here is a test
run which performed a simple match query.

x =2

match x:
case 1:
case 2:
case

In Python, this would normally return '2'. In Capela,
this threw expected an indented block. Since the er-
ror message does not mention that match is unimple-
mented, and does not provide a line number or other
pointer to the expression, programmers could have
trouble figuring out what had gone wrong. We recom-
mended that Capela provide a more informative error
message until match was ready (#7).

3.3 Destructuring Bind Leaks Internal
Structures (#2)

In version ebf0f3e and below, destructuring a list
leaked internal Capela structures into runtime vari-
ables. For example, consider this program, which de-
structures the list [1, 2], and should result in y =
2:

x, y=1[1, 2]
y

In Capela, this program returned {:object_type
"builtins.Effect"}, rather than 2. We found
a number of internal representations leaked into
return values, including builtins.Effect and
builtins.Projection. The cause was simple: while
destructuring bind created an effect, it was never ap-
plied to the right-hand side of the statement. Capela
fixed this issue (#2) in version 599e9cb.

https://github.com/jepsen-io/capela/blob/90ebe472f6a9d4e5590e0a10be492e6243438c9d/src/jepsen/capela/workload/partition_set.clj
https://github.com/jepsen-io/capela/blob/90ebe472f6a9d4e5590e0a10be492e6243438c9d/src/jepsen/capela/workload/ad_hoc.clj
https://github.com/jepsen-io/capela/blob/90ebe472f6a9d4e5590e0a10be492e6243438c9d/src/jepsen/capela/workload/gen_py.clj
https://www.jython.org/
https://clojure.org/guides/test_check_beginner
https://github.com/capela-inc/capela-public/issues
https://s3.amazonaws.com/jepsen.io/analyses/capela-dda5892/20250410T161641-destructuring.zip
https://github.com/asmc-ai/capela-public/issues/1
https://s3.amazonaws.com/jepsen.io/analyses/capela-dda5892/20250415T090714-match.zip
https://s3.amazonaws.com/jepsen.io/analyses/capela-dda5892/20250415T090714-match.zip
https://github.com/asmc-ai/capela-public/issues/7
https://s3.amazonaws.com/jepsen.io/analyses/capela-dda5892/20250415T090714-match.zip
https://github.com/asmc-ai/capela-public/issues/2

3.4 Semi-Lazy Assignment Order (#6)

Unlike Python, Capela’s variable assignment seman-
tics were somewhat, but not entirely, lazy. This
allowed programs which would crash in Python to
silently succeed in Capela, and vice-versa. In version
ebf0f3e, we observed several interesting behaviors.
For example, take the program...

def £(O):
X

This compiles and returns 'ok' in Python. Python al-
lows variables to be defined after the functions which
use them; £ () throws at call time, not compile time. In
Capela, this program threw name not found: x; the
compiler required that variables referred to in a func-
tion be defined beforehand. On the other hand, Capela
allowed the use of unbound variables outside a func-
tion:

X =5y
y=x
X

In Python, this throws name 'y' is not defined. In
Capela, it returned the JSON object {:object_type
"builtins.Thunk"}—a representation of an internal
structure representing lazy evaluation. This laziness
allowed programs to read values “from the lexical fu-
ture”:

y =X
x =2
y

This returned 2, rather than Python’s name 'x' is
not defined. On the other hand, sometimes assign-
ment in Capela did occur in lexical order:

y = x
x =1
Z = X
x =2
[z, v, 2]

This returned [2, 2, 1]: x observed y’s later value,
even though it was assigned before y existed. How-
ever, z observed y’s earlier value, even though it was
assigned after x!

One might assume that Python programmers would
simply not write programs like this. However, pro-
grammers do make mistakes and use variables out of
order by accident. In Python, the language’s (mostly)
eager assignment order catches these kinds of errors
early. In Capela, several of our test programs inadver-
tently fell afoul of lazy evaluation, silently returning
incorrect results. Debugging these issues took consid-
erable effort.

Capela states their compiler “should codegen IR that
preserves the expected Python behavior.” We opened
#6 for these divergences from Python.

3.5 Unset Env Panics (#16)

When attempting to create a new partition with ini-
tial values, or when executing transactions, version
1cde55b would often return an HTTP 500 error com-
plaining a task had panicked:

POST /partitions {"object_type": "foo.Foo",
"id": 0}

=> HTTP 500 'task 824 panicked with message

"Env is not set for the current thread"'

These panics appeared constantly in node logs, even
in healthy clusters. In some cases the node contin-
ued running; in others, it crashed. The most common
source was ext_serde.rs:57. Capela is investigating
this issue (#16).

3.6 Replication Lag Crash (#4)

In our initial tests of version ebf0f3e, we found that
Capela reliably crashed after roughly a minute of oper-
ation. After a few hundred transactions a node would
often panic, complaining that it Failed to receive
block from BlockExchange: Lagged. For instance,
take this short test, on which node n1 crashed after
about ten seconds:

thread 'netdev' panicked at
uvm_syn/src/net/libp2p/driver/blocks.rs:199:25:
Failed to receive block from BlockExchange:
Lagged (266)

The node then entered a shutdown process, and went
through a cascade of additional errors: unwrapping
Results which contained Err values, attempting to ac-
cess a txn attribute on a NoneType object, and finally
panicking in a destructor.

This issue (#4) appeared with as few as five transac-
tions per second. Capela is investigating.

3.7 Fast Sync Timeout Crash (#22)

In version 599e9cb, freshly started clusters without
faults could have nodes spontaneously crash due to a
timeout while syncing the history of a partition. In
this test run, one node logged the following, then ex-
ited:

netdev ThreadId(18)

uvm_syn: :net::stsync::behaviour: Query timed
out: FastSyncPartitionHistory { partition:
17ee0...07d, from_block: Some(BlockReference
{ block_no: 1, block_hash: "897...f22" }),
to_block: None, limit: Some(32) }
query=QueryId(3v39)

The test harness automatically restarted the node,
whereupon it crashed immediately. Before crashing,
it logged that uvm_syn: :mvcc: :partition: :run_loop
had encountered an error: Block out of order: 3
1= 2. Capela is investigating this issue (#22).

https://s3.amazonaws.com/jepsen.io/analyses/capela-dda5892/20250411T120455-lazy-eval.zip
https://github.com/asmc-ai/capela-public/issues/6
https://s3.amazonaws.com/jepsen.io/analyses/capela-dda5892/20250410T124051-create-partition-env-error.zip
https://github.com/asmc-ai/capela-public/issues/16
https://s3.amazonaws.com/jepsen.io/analyses/capela-dda5892/20250411T120455-block-lag-crash.zip
https://github.com/asmc-ai/capela-public/issues/4
https://s3.amazonaws.com/jepsen.io/analyses/0250421T14463-block-lag.zip
https://s3.amazonaws.com/jepsen.io/analyses/0250421T14463-block-lag.zip
https://github.com/user-attachments/files/20050638/20250505T194752.149Z.zip
https://github.com/asmc-ai/capela-public/issues/22

3.8 Double-Borrow Error in vin_task.rs (#8)

In version ebf0f3e, we observed nodes in healthy clus-
ters spontaneously crash after a few seconds of trans-
actions with a BorrowMutError panic in vm_task.rs.

thread 'tokio-runtime-worker' panicked at
uvm_syn/src/mini/env/vm_task.rs:165:40:
already borrowed: BorrowMutError

Capela is investigating this issue (#8).

3.9 Double-Borrow Error in tx.rs (#17)

In version 599e9cb, nodes in healthy clusters occasion-
ally panicked with an apparently non-fatal borrow er-
ror in tx.rs. For example, take this test run, in which
node n1 logged:

thread 'tokio-runtime-worker' panicked at
uvm_syn/src/mini/builtins/tx.rs:264:69:
already mutably borrowed: BorrowError

Capela is investigating this issue (#17).

3.10 Double-Borrow Error in reloc.rs (#18)

We also observed already borrowed panics in
reloc.rs. These errors occurred in healthy clusters,
but they did not cause the node as a whole to crash.
For example:

thread 'tokio-runtime-worker' panicked at
uvm_syn/src/mini/env/reloc.rs:266:48:
already borrowed: BorrowMutError

Capela is investigating this issue (#18).

3.11 Unimplemented Panic in election.rs
(#11)

In healthy clusters under light load, Capela ebf0f3e
would occasionally log not yet implemented panic
messages from the election module. For instance, in
this run, node n2 logged...

thread 'tokio-runtime-worker' panicked at
uvm_syn/src/mvcc/partition/run_loop/
election.rs:1507:17: not yet implemented

Capela is investigating this issue (#11).

3.12 Double-Free or Corruption Crash (#12)

In version ebf0f3e, we found nodes in freshly-
created, healthy clusters occasionally crashed with
a double-free or corruption (out) message, while
creating partitions.

thread 'tokio-runtime-worker' panicked
at uvm_syn/src/mini/ext_serde.rs:57:9:
Env is not set for the current thread
double free or corruption (out)
exception_to_error: task 835 panicked
with message "Env is not set for the
current thread"

Capela is investigating this issue (#12).

3.13 Corruption of Memory Allocator State (#21)

In version 599e9cb, fresh clusters would fre-
quently crash during setup, logging malloc():
unaligned tcache chunk detected, corrupted size
vs prev_size, corrupted double-linked list, or
malloc(): invalid size (unsorted).

These errors (#21) suggest that Capela often corrupted
the internal state of the memory allocator, possibly via
an out of bounds write, buffer overrun, or other mem-
ory error. Valgrind suggests some memory leaks, but
we were unable to determine the cause. Capela is in-
vestigating.

3.14 B-Tree Height Assertion Crash (#15)

In version ebf0f3e, nodes in a healthy cluster, with-
out faults, could crash following an assertion failure
involving a B-tree height invariant. In this test run,
node n1 crashed with:

thread 'tokio-runtime-worker' panicked at
/rustc/854£22563c8daf92709fae18eebaed52953835cd
/library/alloc/src/collections/btree/node.rs:
685:9: assertion failed: edge.height ==
self.height - 1

Capela is investigating this issue (#15).

3.15 Index Out of Bounds in reloc.rs (#23)

In 599e9cb, nodes in a freshly started cluster could
crash during partition creation, without any fault
injection, due to an index out of bounds error in
reloc.rs. For example, this run had a node crash
with:

thread 'tokio-runtime-worker' panicked at
uvm_syn/src/mini/env/reloc.rs:546:28:
index out of bounds: the len is 17 but the
index is 19

Capela is investigating this issue (#23).

https://s3.amazonaws.com/jepsen.io/analyses/capela-dda5892/20250416T113009-already-borrowed.zip
https://github.com/asmc-ai/capela-public/issues/8
https://s3.amazonaws.com/jepsen.io/analyses/capela-dda5892/20250429T153705-already-mutably-borrowed.zip
https://github.com/asmc-ai/capela-public/issues/17
https://s3.amazonaws.com/jepsen.io/analyses/capela-dda5892/20250429T084055-double-borrow-reloc.zip
https://github.com/asmc-ai/capela-public/issues/18
https://s3.amazonaws.com/jepsen.io/analyses/capela-dda5892/0250418T082059-election-not-yet-implemented.zip
https://github.com/asmc-ai/capela-public/issues/11
https://s3.amazonaws.com/jepsen.io/analyses/capela-dda5892/20250418T133615-double-free.zip
https://github.com/asmc-ai/capela-public/issues/12
https://github.com/user-attachments/files/20037957/20250505T132829.287Z.zip
https://github.com/user-attachments/files/20037957/20250505T132829.287Z.zip
https://github.com/user-attachments/files/20039528/20250505T140934.717Z.zip
https://github.com/user-attachments/files/20039528/20250505T140934.717Z.zip
https://github.com/user-attachments/files/20051071/20250505T204302.365Z.zip
https://github.com/user-attachments/files/20051456/20250505T221711.072Z.zip
https://github.com/asmc-ai/capela-public/issues/21
https://github.com/asmc-ai/capela-public/issues/21#issuecomment-2852027021
https://s3.amazonaws.com/jepsen.io/analyses/capela-dda5892/0250421T140228-btree-height-crash.zip
https://github.com/asmc-ai/capela-public/issues/15
https://github.com/user-attachments/files/20050831/20250505T202625.030Z.zip
https://github.com/asmc-ai/capela-public/issues/23

3.16 Unreachable Code Panic in
latches-0.2.0 (#13)

In version ebf0f 3e, following an election, Capela could
log a non-fatal panic like:

thread 'tokio-runtime-worker' panicked

at /root/.cargo/registry/src/
index.crates.io-1949cf8c6b5b557f/
latches-0.2.0/src/task/waiters/mod.rs:51:22:
internal error: entered unreachable code:
update non-existent waker

We were able to reproduce this issue (#13) with either
process pauses or kills. Capela is investigating.

3.17 Crashes on Startup With . sst File Bitflips
(#10)

Capela uses sorted strings tables (.sst files) to store
data on disk. In version ebf0f3e, introducing a hand-
ful of single-bit errors into one of these .sst files
caused the node to crash immediately on startup,
logging Corruption: block checksum mismatch. For
example, take this run, where corruption in n1’s
storage/00031.sst caused nl to crash with:

thread 'main' panicked at
uvm_syn/src/runtime/host.rs:366:73:

called “Result::unwrap()” on an “Err’ value:
RocksDB(Error { message: "Corruption: block
checksum mismatch: stored(context removed) =
2870321000, computed = 3921368871, type = 4
in /opt/capela/data/storage/000031.sst
offset 873 size 937 The file
/opt/capela/data/storage/MANIFEST-000034

may be corrupted." })

Note that this log line mis-identifies the corrupted
file—this test only corrupted the . sst filesin storage/,
not the MANIFEST files. Corruption in different directo-
ries caused slightly different error messages.

Many databases crash when their on-disk files are cor-
rupted. Only a few, like Riak and TigerBeetle, are de-
signed to tolerate and repair disk errors. Capela’s en-
gineers intend for Capela to handle disk errors grace-
fully, so we reported this as #10.

3.18 Crash in 1libp2p-rendezvous With File
Snapshot/Restore (#14)

In version ebf0f3e we encountered a rare crash
caused by a panic in 1ibp2p-rendezvous. Our only ex-
ample of this crash involved process kills, combined
with restoring snapshots of .sst and .blob files.

thread 'netdev' panicked at
/root/.cargo/registry/src/index.crates.io-
1949¢c£8c6b5b557f/1ibp2p-rendezvous-0.16.0/
src/server.rs:194:38:

Send response: DiscoverResponse(0k(([], Cookie
{ id: 5474065259777396154, namespace:

Some (Namespace ("uvm-sync")) })))

Capela is investigating this issue (#14).

3.19 Performance Degradation (#19)

After roughly 20 to 100 seconds of operation, healthy
clusters typically flipped into a degraded state. Good-
put dropped from roughly 50 to about 0.2 transac-
tions per second. Latencies on most nodes jumped
from roughly five milliseconds to over five seconds (our
client socket timeout). Here are typical plots of latency
and throughput over time, for a five-node cluster run-
ning version 599e9cb.

2025-04-28-599e9cb multi-append rate

180 . . .

160 | |
140 | |
120 | |
100 ||
80 |

Throughput (hz)

60 |
40 |

T = I O O O Y O O I I I
0 I e R e =S

txn ok
txn info
1 txn faill —=—

15 20

Time (s)

T 250 300 400

https://s3.amazonaws.com/jepsen.io/analyses/capela-dda5892/20250421T110629-non-existent-waker.zip
https://github.com/asmc-ai/capela-public/issues/13
https://s3.amazonaws.com/jepsen.io/analyses/capela-dda5892/20250418T083513-bitflip-storage-crash.zip
https://docs.riak.com/riak/kv/2.2.3/learn/concepts/active-anti-entropy/
https://docs.tigerbeetle.com/concepts/safety/#storage-fault-tolerance
https://github.com/asmc-ai/capela-public/issues/10
https://s3.amazonaws.com/jepsen.io/analyses/capela-dda5892/20250418T182605-netdev-panic.zip
https://s3.amazonaws.com/jepsen.io/analyses/capela-dda5892/20250418T182605-netdev-panic.zip
https://github.com/asmc-ai/capela-public/issues/14
https://s3.amazonaws.com/jepsen.io/analyses/capela-dda5892/20250430T115614-perf-degradation.zip
https://s3.amazonaws.com/jepsen.io/analyses/capela-dda5892/20250430T115614-perf-degradation.zip

2025-04-28-599e9cb multi-append latency

' txn ok
txn info
txnfal o
1000 L o .
m
£ 100
~ L _
=
[2b]
™ o
|
10 g -
0 50 100 150 200 250 300 350 400
Time (s)

In this test, the performance degradation was con-
temporaneous with node n4 crashing due to a
BlockExchange: Lagged panic. The test suite detected
the crash and restarted n4, but the cluster never recov-
ered. From that point on, only requests against node
nl succeeded. All others timed out.

Capela is investigating this issue (#19).

3.20 New Partitions Ignore Provided Fields (#3)

When creating a partition, one provides a JSON map
with the object_type to be instantiated, and any fields
one wishes to set on the resulting object. For example,
consider a dog with a name field:

class Dog(Node) :
name: str

To create a particularly noble dog, one might make an
HTTP request like...

POST /partitions
{"object_type": "dog.Dog",
"name": "Baron Frederick von Puppington III"}

In version 1cde55b and below, this created a Dog with
no name: the get_or_create_partition function ig-
nored any fields provided and hardcoded an initial pay-
load of None. Moreover, since partitions are uniquely
identified by their state, making multiple POST re-
quests to create different dogs would, in fact, return
the same empty dog each time. This issue (#3) was
fixed in version ebf0f3e (2024-04-10), but returned in
599e9cb (2024-04-28). Capela is investigating.

3.21 Partitions Vanish And Reappear (#24)

After their creation has been acknowledged, partitions
in Capela should always appear to readers. However,
in version ebf0f3e, we found that partitions sporadi-
cally disappeared after being created. This occurred
even in healthy clusters under minimal load. We

observed this problem frequently in our list-append
tests—where it caused transactions to abort—and de-
signed the partition-set workload to confirm.

For example, take this test run, which attempted to
create eight partitions, each storing a single unique
integer. Seven of those attempts (1, 2, 4, 5, 6, 7, and
8) succeeded. However, only partition 5 was reliably
visible to all readers at the end of the test. For the
other six partitions, calls to select(partition-key)
returned None on some nodes.

Capela is investigating this issue (#24).

3.22 Lost Update (#5)

In version ebf0f3e, transactions involving reads and
writes to our single-partition key-value store appeared
to exhibit P4 (Lost Update). For instance, here is
a 20-second test run which performed 1,633 success-
ful transactions against a healthy three-node cluster,
without faults. It found 50 instances of Lost Update:
two or more committed transactions which read the
same version of some key, then wrote that key.

r10172 [w10 178

rlﬂl78‘

w10 175

w 8202 ‘ r10172 ‘ w 10174

Here are five of those transactions, all of which read
key 10’s value as 176, wrote some other value for key
10, and committed. None of them observed the others’

https://github.com/asmc-ai/capela-public/issues/19
https://github.com/asmc-ai/capela-public/issues/3
https://github.com/user-attachments/files/20066990/20250506T110419.058-0500.zip
https://github.com/asmc-ai/capela-public/issues/24
https://github.com/jepsen-io/capela/blob/90ebe472f6a9d4e5590e0a10be492e6243438c9d/resources/wr.py
https://jepsen.io/consistency/phenomena/p4
https://s3.amazonaws.com/jepsen.io/analyses/capela-dda5892/20250411T120455-lost-update.zip

effects, which is why there are read-write (:rw) depen-
dencies between them. Under Update Atomic, at most
one of these transactions may commit. This history
therefore violates Update Atomic, Parallel Snapshot
Isolation, Snapshot Isolation, Serializability, and so
on.

Transactions also observed divergent timelines of
writes to individual keys. For example, here are the
first few non-empty reads of key 12 from a short list-
append test:

Process Observed Value
11 1

6 1,2

11 1,23

1 1

1 1

11 1,4,6

1 1,4,7,8

1 1,4,7,8

6 1,4,6

11 1,4,7,8,9

1 1,4,7,8,9,10
6 1,4,7,8,9,10

After this time, the elements [1, 4, 7, 8, 9, 10]
were stable, though later elements continued to fluc-
tuate. Since transactions only ever append elements,
every read of key 12 should have been consistent—
namely, a prefix of the longest version of the list.

Instead, transactions observed elements which ap-
peared for some time, then vanished permanently.
These lost elements could also be seen by multiple
transactions. The first read of [1, 2] above was per-
formed by the transaction which appended 2:

[[:append 12 2]
[:r 12 [1 2]]
[:append 12 3]]

However, this append of 2 was also observed by a con-
current, read-only transaction, before it vanished per-
manently.

[[:x 6 [123...1]
[cr 6 [123...1]
[:cr7[467...1]
[:r 12 [1 2 3]]]

Prior to version 599e9cb, transactions never aborted.
In 599e9c¢b, transactions often returned HTTP 500 er-
rors with the message Transaction aborted, and we
no longer observed Lost Update or incompatible orders
in list-append tests. However, we continued to see
them with write-read registers. There may have been
two separate bugs, or perhaps the change to transac-
tion error handling only affected the list-append work-
load.

Capela is unsure what caused this bug (#5), or why
their changes might have affected it. Investigation is
ongoing.

Ne Summary Event Required Fixed in

#1 for loops don’t loop None 25¢4b96

#7 match is unimplemented None Unresolved
#2 Destructuring bind leaks internal structures None 599e9cb

#6 Semi-lazy assignment order None Unresolved
#16 Unset Env panic None Unresolved
#4 Replication lag crash None Unresolved
#22 Fast sync timeout crash None Unresolved
#8 Double-borrow error in vm_task.rs None Unresolved
#17 Double-borrow error in tx.rs None Unresolved
#18 Double-borrow error in reloc.rs None Unresolved
#11 Unimplemented panic in election.rs None Unresolved
#12 Double-free or corruption crash None Unresolved
#21 Corruption of memory allocator state None Unresolved
#15 B-tree height assertion crash None Unresolved
#23 Index out of bounds in reloc.rs None Unresolved
#13 Unreachable code panic in latches-0.2.0 Pause Unresolved
#10 Crash on startup due to .sst file corruption File bitflips Unresolved
#14 Crash in 1ibp2p-rendezvous File snapshot/restore ~ Unresolved
#19 Performance degradation None Unresolved
#3 New partitions ignore provided fields None Unresolved
#24 Partitions vanish and reappear None Unresolved
#5 Lost Update None Unresolved

https://software.imdea.org/~andrea.cerone/works/Framework.pdf
https://s3.amazonaws.com/jepsen.io/analyses/capela-dda5892/20250430T083431-incompatible-order.zip
https://s3.amazonaws.com/jepsen.io/analyses/capela-dda5892/20250430T083431-incompatible-order.zip
https://github.com/asmc-ai/capela-public/issues/5
https://github.com/asmc-ai/capela-public/issues/1
https://github.com/asmc-ai/capela-public/issues/7
https://github.com/asmc-ai/capela-public/issues/2
https://github.com/asmc-ai/capela-public/issues/6
https://github.com/asmc-ai/capela-public/issues/16
https://github.com/asmc-ai/capela-public/issues/4
https://github.com/asmc-ai/capela-public/issues/22
https://github.com/asmc-ai/capela-public/issues/8
https://github.com/asmc-ai/capela-public/issues/17
https://github.com/asmc-ai/capela-public/issues/18
https://github.com/asmc-ai/capela-public/issues/11
https://github.com/asmc-ai/capela-public/issues/12
https://github.com/asmc-ai/capela-public/issues/21
https://github.com/asmc-ai/capela-public/issues/15
https://github.com/asmc-ai/capela-public/issues/23
https://github.com/asmc-ai/capela-public/issues/13
https://github.com/asmc-ai/capela-public/issues/10
https://github.com/asmc-ai/capela-public/issues/14
https://github.com/asmc-ai/capela-public/issues/19
https://github.com/asmc-ai/capela-public/issues/3
https://github.com/asmc-ai/capela-public/issues/24
https://github.com/asmc-ai/capela-public/issues/5

4 Discussion

Capela engaged Jepsen early in the development pro-
cess to help validate safety and fault tolerance. Dur-
ing our collaboration in spring 2025, Capela was still
an unreleased prototype with no documentation. Core
features such as iteration and side effects had not yet
been implemented. Builds routinely crashed after a
few seconds, and throughput generally fell to just a
few transactions per second after a minute or so. We
observed frequent data loss. We stress that these are
normal behaviors for a system in early development—
Capela intends to resolve safety issues and crashes
prior to their first public release. Capela also aims to
support most, if not all, of Python’s semantics before
the release.

While language semantics were not the focus of our
investigation, we found four issues in Capela’s Python
compiler: unsupported syntax (#7), semi-lazy variable
assignment (#6), for loops which quietly did nothing
(#1), and internal language structures leaking out of
destructuring bind (#2). Issues #1 and #2 were re-
solved in 25c4b96 and 599e9cb respectively; the others
have yet to be addressed.

We found fourteen crashes or non-fatal panics in
Capela. Nodes panicked due to missing Env structures
(#16), slow replication (#4, #22), double-borrow errors
(#8, #17, #18), unimplemented code (#11), double-free
or other memory corruption errors (#12, #21), B-tree
height invariant errors (#15), an index out of bounds
(#23), unreachable code (#13), and file corruption (#10,
#14). Many took down the node entirely. All but the
last three occurred in healthy clusters. We also found
severe performance degradation in almost every test
run. After roughly a minute, transaction through-
put would drop by two orders of magnitude, and RPC
requests to most nodes would simply time out (#19).
Capela is investigating these issues.

Finally, we found three safety issues in Capela. Newly
created partitions silently ignored the initial val-
ues provided for their fields (#3). Partitions would
randomly vanish and reappear after creation (#24).
Transactions also frequently lost writes. We observed
both P4 and incompatible versions of keys in list-
append tests, which suggests versions temporarily di-

verged before being lost (#5). All three issues remain
extant.

Since Capela had no external users during our collabo-
ration, these bugs had no real impact on users. Capela
will continue to invest in testing and resolving bugs
prior to their initial release.

As always, Jepsen takes an experimental approach to
safety verification: we can prove the presence of bugs,
but not their absence. While we make extensive ef-
forts to find problems, we cannot prove correctness. In
particular, our tests were limited by Capela’s frequent
crashes and performance degradation. Capela could
have additional correctness bugs which did not ap-
pear in our tests because we could not perform enough
transactions to encounter them.

4.1 Future Work

We found a number of additional crashes or panics
which, for want of time, we omit from this report.
Several places in the Capela code attempt to call
Result: :unwrap() on an Err value—for example, is-
sue #9. It also seems likely that the Capela language
has more features which are unimplemented or incor-
rect, such as with expressions. Capela plans to expand
their language test coverage prior to release. Addi-
tional generative testing of programs may prove fruit-
ful.

We have several plans for additional Capela tests. We
would like to create partitions dynamically during
the list-append workload, rather than up-front. We
would like to store data in multiple instance variables
per object. Finally, we believe it would be useful to test
other data structures—both those provided by Capela
and ones we implement ourselves. Instead of using
the built-in list type, we could summon (so to speak) a
list from the void.

This work would not have been possible without the
assistance of the Capela team, including Gabriel
Guimaraes, Jonathan Lima, and Derek Stavis. Our
thanks also to Coda Hale and Ben Linsay for their help
in investigating Rust errors. As always, we are grate-
ful to Irene Kannyo for her editorial support. This re-
search was funded by Capela Inc., and conducted in
accordance with the Jepsen ethics policy.

https://github.com/asmc-ai/capela-public/issues/7
https://github.com/asmc-ai/capela-public/issues/6
https://github.com/asmc-ai/capela-public/issues/1
https://github.com/asmc-ai/capela-public/issues/2
https://github.com/asmc-ai/capela-public/issues/16
https://github.com/asmc-ai/capela-public/issues/4
https://github.com/asmc-ai/capela-public/issues/22
https://github.com/asmc-ai/capela-public/issues/8
https://github.com/asmc-ai/capela-public/issues/17
https://github.com/asmc-ai/capela-public/issues/18
https://github.com/asmc-ai/capela-public/issues/11
https://github.com/asmc-ai/capela-public/issues/12
https://github.com/asmc-ai/capela-public/issues/21
https://github.com/asmc-ai/capela-public/issues/15
https://github.com/asmc-ai/capela-public/issues/23
https://github.com/asmc-ai/capela-public/issues/13
https://github.com/asmc-ai/capela-public/issues/10
https://github.com/asmc-ai/capela-public/issues/14
https://github.com/asmc-ai/capela-public/issues/19
https://github.com/asmc-ai/capela-public/issues/3
https://github.com/asmc-ai/capela-public/issues/24
https://jepsen.io/consistency/phenomena/p4
https://github.com/asmc-ai/capela-public/issues/5
https://github.com/asmc-ai/capela-public/issues/9
https://www.irenekannyo.com/
https://jepsen.io/analyses/ethics

	Background
	Test Design
	Write-Read Registers
	List Append
	Partition Set
	Ad Hoc Queries
	Generative Python

	Results
	for Loops Don't (#1)
	match is Unimplemented (#7)
	Destructuring Bind Leaks Internal Structures (#2)
	Semi-Lazy Assignment Order (#6)
	Unset Env Panics (#16)
	Replication Lag Crash (#4)
	Fast Sync Timeout Crash (#22)
	Double-Borrow Error in vm_task.rs (#8)
	Double-Borrow Error in tx.rs (#17)
	Double-Borrow Error in reloc.rs (#18)
	Unimplemented Panic in election.rs (#11)
	Double-Free or Corruption Crash (#12)
	Corruption of Memory Allocator State (#21)
	B-Tree Height Assertion Crash (#15)
	Index Out of Bounds in reloc.rs (#23)
	Unreachable Code Panic in latches-0.2.0 (#13)
	Crashes on Startup With .sst File Bitflips (#10)
	Crash in libp2p-rendezvous With File Snapshot/Restore (#14)
	Performance Degradation (#19)
	New Partitions Ignore Provided Fields (#3)
	Partitions Vanish And Reappear (#24)
	Lost Update (#5)

	Discussion
	Future Work

