
CockroachDB beta-20160829
2017-02-16

CockroachDB is a distributed, scale-out SQL database which relies on hybrid logical clocks to provide serializabil-
ity, given semi-synchronized node clocks. In this Jepsen analysis, we’ll discuss multiple serializability violations
in CockroachDB beta-20160829 through beta-20160908. As a result of our collaboration, fixes for these issues
are included in beta-20160915 and beta-20161013. This work was funded by Cockroach Labs, and conducted in
accordance with the Jepsen ethics policy. Cockroach Labs has also written a blog post with more context.

1 Background

CockroachDB is a distributed SQL database, loosely
patterned after Google Spanner and designed for semi-
synchronous networks. It speaks the PostgreSQL wire
protocol, supports a reasonable dialect of SQL, and
combines replication for durability with transparent
scale-out sharding for large tables. Its most signifi-
cant limitations (and remember, this database is still
in beta) might be the lack of efficient joins and over-
all poor performance—but in recent months the Cock-
roach Labs team has made significant progress on
these issues, as they work towards a general release.

CockroachDB looks a good deal like Spanner, but
has some important distinctions. Both use two-phase
commit for transactions across consensus groups, but
where Spanner uses locking, CockroachDB uses an op-
timistic concurrency scheme with transaction aborts.
Where Spanner has tight real-time bounds via True-
Time, CockroachDB targets environments with much
less reliable clocks, and uses a Hybrid Logical Clock for
transaction timestamps. Running on commodity hard-
ware, its clock offset limits are significantly higher; to
obtain acceptable performance, it sacrifices external
consistency and provides only serializability.1 Where
Spanner waits after every write to ensure linearizabil-
ity, CockroachDB blocks only on contested reads. As
a consequence, its consistency guarantees are slightly
weaker.

We’ve discussed a few SQL databases in the past
year: Galera Cluster, which targets snapshot isolation,
and VoltDB, which offers strict serializability. Cock-
roachDB falls between the two, offering serializabil-

ity, with limited real-time constraints, but not strict
serializability—it’s a complicated blend.

At the time of this analysis (October 2016), Cock-
roachDB’s consistency documentation said:

CockroachDB replicates your data multi-
ple times and guarantees consistency be-
tween replicas using the Raft consensus al-
gorithm, a popular alternative to Paxos. A
consensus algorithm guarantees that any
majority of replicas together can always
provide the most recently written data on
reads.

They also emphasized the absence of stale reads in the
FAQ:

This means that clients always see a con-
sistent view of your data (i.e., no stale
reads).

… and on the home page:

Consistent replication via majority consen-
sus between replicas, with no possibility of
reading stale data.

This sounds like it might be strict serializability: all
transactions appear to occur atomically at some point
between their invocation and completion. However,
this is not quite the whole story. Cockroach Labs’ blog
post Living Without Atomic Clocks tells us that Cock-
roachDB does not provide linearizability over the en-
tire database.

1In addition to serializability, CockroachDB also provides linearizable transactions in limited cases.

1

https://aphyr.com/tags/Jepsen
http://jepsen.io/ethics.html
https://www.cockroachlabs.com/blog/cockroachdb-beta-passes-jepsen-testing/
http://static.googleusercontent.com/media/research.google.com/en//archive/spanner-osdi2012.pdf
https://www.cockroachlabs.com/docs/sql.html
https://www.cockroachlabs.com/docs/sql.html
https://www.cockroachlabs.com/docs/sql-feature-support.html
https://www.cockroachlabs.com/blog/trust-but-verify-cockroachdb-checks-replication/
https://github.com/cockroachdb/cockroach/blob/master/docs/design.md#overview
https://github.com/cockroachdb/cockroach/blob/master/docs/design.md#overview
https://www.cockroachlabs.com/blog/better-sql-joins-in-cockroachdb/
https://www.cockroachlabs.com/blog/living-without-atomic-clocks/
http://www.cse.buffalo.edu/tech-reports/2014-04.pdf
https://aphyr.com/posts/327-call-me-maybe-mariadb-galera-cluster
https://aphyr.com/posts/331-jepsen-voltdb-6-3
https://www.cockroachlabs.com/docs/strong-consistency.html
https://www.cockroachlabs.com/docs/frequently-asked-questions.html#how-is-cockroachdb-strongly-consistent
http://www.bailis.org/blog/linearizability-versus-serializability/
https://www.cockroachlabs.com/blog/living-without-atomic-clocks/


While Spanner provides linearizability,
CockroachDB’s external consistency guar-
antee is by default only serializability,
though with some features that can help
bridge the gap in practice.

The Raft consensus algorithm ensures that all oper-
ations on the system are globally linearizable. How-
ever, CockroachDB does not use a single Raft cluster:
it runs many clusters, each storing a different part
of the keyspace. In general, we cannot expect that a
transaction which involves operations onmultiple Raft
clusters will be linearizable; some higher-level commit
protocol is required. Moreover, CockroachDB doesn’t
thread reads through the Raft state machine: it by-
passes Raft and reads the state of a leader with a time-
based lease on that key range. So how can it provide
serializability? And why are stale reads prohibited?

The answer is that on top of the Raft layer for discrete
key-value storage, CockroachDB implements a trans-
action protocol which allows for arbitrary, serializable
multi-key updates. Consistent snapshots across mul-
tiple keys are derived based on timestamps, which are
derived from hybrid logical clocks: semi-synchronized
wall clocks with the assistance of causality tracking.
Stale reads are mostly2 prevented by the fact that
transactions which touch the same keys will touch the
same nodes, and therefore reads on specific keys must
obtain higher timestamps than completed prior writes
to those keys.

Of course, the safety of this system depends on the cor-
rectness of the cluster’s local clocks. Should the clock
offset between two nodes grow too large, transactions
will no longer be consistent and all bets are off.

Therefore: so long as clocks are well-synchronized,
CockroachDB offers serializable isolation in all cases,
and also happens to provide linearizability on individ-
ual keys: you can read the latest successfully written
value for any single key. However, as we will see in
section 2.5, the database as a whole is not lineariz-
able: transactions across multiple keys may not ob-
serve the latest values. Since CockroachDB can exhibit
anomalies in which transactions on disjoint keys are
observed contrary to real-time order, it does not pro-
vide strict serializability—what Spanner terms exter-
nal consistency. Reads can in fact be stale, in limited
cases.

To see exactly how these properties play out, we’ll ex-
plore CockroachDB’s behavior in several consistency
tests.

2 Tests

Cockroach Labs designed and evaluated several tests
using the Jepsen framework, and found two issues on
their own: first, that their clock-offset detection algo-
rithm was insufficiently aggressive, and second, that
SQL timestamps should be derived from the underly-
ing KV layer timestamps. To build confidence in their
work, Cockroach Labs asked me to review and extend
their test suite.

Cockroach Labs had already written an impressive
test suite, including a family of composable failure
modes and four types of tests. We identified bugs,
improved reliability and the resolving power of many
tests, added more precise control over clock offset, and
added three new tests (sequential, G2, and comments).

The register test is a single-key linearizable register—
which formed the basis for the etcd and consul tests,
among others. Sequential looks for violations of se-
quential consistency acrossmultiple keys, where trans-
action order is inconsistent with client order. Bank,
adapted from the Galera snapshot isolation test, veri-
fies that CockroachDB conserves the total sum of val-
ues in a table, while transferring units between vari-
ous rows. G2 checks for a type of phantom anomaly
prevented by serializability: anti-dependency cycles in-
volving predicate reads. All these tests pass, so long as
clock offset is appropriately bounded.

Three tests reveal anomalies: comments checks for a
specific type of strict serializability violation, where
transactions on disjoint records are visible out of order.
This behavior is by design. The set test implements a
simple unordered set: we insert many rows into a table
and perform a final read of all rows to verify their pres-
ence. Finally, monotonic verifies that CockroachDB’s
internal transaction timestamps are consistent with
logical transaction order. These tests uncovered two
new bugs—double-applied transactions, and a serial-
izability violation.

We’ll talk about each of these tests in turn. Because
CockroachDB assumes semi-synchronous clocks, un-
less otherwise noted, we only introduce clock offsets
smaller than the default threshold of 250 milliseconds.
When clock offset exceeds these bounds, as measured
by an internal clock synchronization estimator, all bets
are off: some nodes will shut themselves down, but not
before allowing various transactional anomalies.

2They mostly commit on time. Mostly.

2

https://raft.github.io
https://www.cockroachlabs.com/blog/how-cockroachdb-distributes-atomic-transactions/
https://www.cockroachlabs.com/blog/how-cockroachdb-distributes-atomic-transactions/
https://www.cse.buffalo.edu/tech-reports/2014-04.pdf
https://www.cockroachlabs.com/blog/diy-jepsen-testing-cockroachdb/
https://www.cockroachlabs.com/blog/diy-jepsen-testing-cockroachdb/
https://github.com/cockroachdb/cockroach/issues/4884
https://github.com/cockroachdb/cockroach/issues/4393
https://github.com/cockroachdb/cockroach/issues/4393
https://aphyr.com/posts/316-jepsen-etcd-and-consul
https://aphyr.com/posts/327-jepsen-mariadb-galera-cluster
http://se.inf.tu-dresden.de/pubs/papers/SRDS1994.pdf


2.1 Register

Individual keys within CockroachDB are stored by a
single Raft cluster: updates to them are linearizable
because they go through Raft consensus. Read safety
is enforced by leader leases and hybrid logical clocks.
We’ll verify that these two systems provide linearizabil-
ity by performing random writes, reads, and compare-
and-sets on single keys, then checking that operations
on each independent key form a linearizable history.

Under various combinations of node failure, partitions,
and clock offsets, individual keys in CockroachDB ap-
pear linearizable. Linearizability violations such as
stale reads can occur when the clock offset exceeds
CockroachDB’s threshold.

2.2 Bank

The bank test was originally designed to verify snap-
shot isolation in Galera Cluster. It simulates a set of
bank accounts, one per row, and transfers money be-
tween them at random, ensuring that no account goes
negative. Under snapshot isolation, one can prove that
transfers must serialize, and the sum of all accounts
is conserved. Meanwhile, read transactions select the
current balance of all accounts. Snapshot isolation en-
sures those reads see a consistent snapshot, which im-
plies the sum of accounts in any read is constant as
well.

In MariaDB with Galera and Percona XtraDB Cluster,
this test revealed that neither system offered snapshot
isolation. Under CockroachDB, however, bank tests
(both within a single table and between multiple ta-
bles) passed consistently.

2.3 Sequential

CockroachDB does not offer strict serializability. How-
ever, as a consequence of its implementation of hybrid
logical clocks, all transactions on a particular node
should observe a strong real-time order. So long as
CockroachDB clients are sticky (e.g. bound to the same
server), we expect those clients should observe sequen-
tial consistency as well: the effective order of trans-
actions should be consistent with the order on every
client.

To verify this, we have a single client perform
a sequence of independent transactions, inserting
k1, k2, . . . , kn into different tables. Concurrently, a dif-
ferent client attempts to read each of kn, . . . , k2, k1 in
turn. Because all inserts occur from the same process,

they must also be visible to any single process in that
order. This implies that once a process observes kn,
any subsequent read must see kn−1, and by induction,
all smaller keys.

Like G2 and the bank tests, this test does not verify
consistency in general. However, for this particular
class of transactions, CockroachDB appears to provide
sequential consistency—so long as clients are sticky
and clock offset remains below the critical threshold.

2.4 G2

We can also test for the presence of anti-dependency cy-
cles in pairs of transactions, which should be prevented
under serializability. These cycles, termed “G2”, are
one of the anomalies described by Atul Adya in his
1999 thesis on transactional consistency. It involves a
cycle in the transaction dependency graph, where one
transaction overwrites a value a different transaction
has read. For instance:

T1: r(x), w(y)
T2: r(y), w(x)

could interleave like so:

T1: r(x)
T2: r(y)
T1: w(y)
T2: w(x)
T1: commit
T2: commit

This violates serializability because the value of a key
could have changed since the transaction first read it.
However, G2 doesn’t just apply to individual keys—it
covers predicates as well. For example, we can take two
tables…

create table a (
id int primary key,
key int,
value int);

create table b (
id int primary key,
key int,
value int);

where id is a globally unique identifier, and key de-
notes a particular instance of a test. Our transactions
select all rows for a specific key, in either table, match-
ing some predicate:

3

https://aphyr.com/posts/313-strong-consistency-models
https://github.com/jepsen-io/jepsen/blob/4d402bae4a216632a897be8f0795a6eff0462837/cockroachdb/src/jepsen/cockroach/register.clj#L57-L72
https://github.com/jepsen-io/jepsen/blob/4d402bae4a216632a897be8f0795a6eff0462837/cockroachdb/src/jepsen/cockroach/register.clj#L57-L72
https://aphyr.com/posts/327-jepsen-mariadb-galera-cluster
https://github.com/jepsen-io/jepsen/blob/4d402bae4a216632a897be8f0795a6eff0462837/cockroachdb/src/jepsen/cockroach/bank.clj#L51-L81
https://github.com/jepsen-io/jepsen/blob/4d402bae4a216632a897be8f0795a6eff0462837/cockroachdb/src/jepsen/cockroach/bank.clj#L51-L81
https://en.wikipedia.org/wiki/Sequential_consistency
https://en.wikipedia.org/wiki/Sequential_consistency
https://github.com/jepsen-io/jepsen/blob/4d402bae4a216632a897be8f0795a6eff0462837/cockroachdb/src/jepsen/cockroach/sequential.clj#L76-L95
http://www.cburch.com/cs/340/reading/serial/
http://pmg.csail.mit.edu/papers/adya-phd.pdf
https://github.com/jepsen-io/jepsen/blob/983ebcf0f38a39654136d15c6fa9b71df09b7f4a/cockroachdb/src/jepsen/cockroach/adya.clj#L52-L64


select * from a where
key = 5 and value % 3 = 0;

select * from b where
key = 5 and value % 3 = 0;

If we find any rows matching these queries, we abort.
If there are no matching rows, we insert (in one trans-
action, to a, in the other, to b), a row which would fall
under that predicate:

insert into a values (123, 5, 30);

In a serializable history, these transactions must ap-
pear to execute sequentially, which implies that one
sees the other’s insert. Therefore, at most one of
these transactions may succeed. Indeed, this seems to
hold: we have never observed a case in which both of
these transactions committed successfully. However,
a closely related test, monotonic, does reveal a serial-
izability violation—we’ll talk about that shortly.

2.5 Comments

The sequential test demonstrates that a series of in-
serts by a single process will be observed (by any partic-
ular single process) in order. However, CockroachDB
does not provide strict serializability—linearizability
over the entire keyspace. Thismeans that transactions
over different keys may not be observed in their real-
time order.

For example, imagine an application which has a se-
quential stream of comments. Users make comments
by inserting new rows into a table. Because each re-
quest is load-balanced to a different server, two trans-
actions from the same user may execute on different
CockroachDB nodes. Now imagine that a user makes
a comment C1 in transaction T1. T1 completes suc-
cessfully. The user then realizes they made a mistake,

and posts a correction comment C2, in transaction T2.
Meanwhile, someone attempts to read all comments in
a third transaction T3, concurrent with both T1 and T2.

Surprisingly, serializability places no constraints on
when an insert-only transaction is visible. It is, in
fact, legal to reorder both inserts to t = ∞, in which
case no read will ever see them. As a performance op-
timization, a serializable database may opt to throw
away those insert-only transactions immediately. This
is probably not what we want, but it is legal!

However, as we saw in the register tests, CockroachDB
appears to provide linearizability on single keys, which
implies a stronger constraint: C1 must become visible
to readers sometime between T1’s invocation and com-
pletion. Similarly, C2 must be visible by the time T2 re-
turns to the client. Since T1 and T2 do not overlap, one
might assume that C2 must never appear without C1.
This would be true in a strict serializable system. How-
ever, these constraints only apply to single-key transac-
tions. Transactions across multiple keys can exhibit
unintuitive behavior. For instance, they could inter-
leave like so:

T3: r(C1) (not found)
T1: w(C1)
T1: commit
T2: w(C2)
T2: commit
T3: r(C2) (found)
T3: commit

This is legal because T1 and T2 are causally unrelated
and can be evaluated in any order while preserving se-
rializability. A user could observe the followup com-
ment C2, but not the original comment C1. Indeed, we
find exactly this behavior in experimental runs:

24 :invoke :read nil
23 :invoke :write 425
23 :ok :write 425
21 :invoke :write 430
21 :ok :write 430
24 :ok :read #{2 10 15 20 34 35 38 42 43 47 51 53 59 61 71 72 82 88 89

113 119 123 129 132 145 146 163 167 176 206 216 224 230
238 243 244 255 260 292 294 299 312 316 324 325 327 330
350 356 359 360 361 363 366 367 371 376 403 410 419 422
430}

4

http://www.bailis.org/blog/linearizability-versus-serializability/
https://github.com/jepsen-io/jepsen/blob/983ebcf0f38a39654136d15c6fa9b71df09b7f4a/cockroachdb/src/jepsen/cockroach/comments.clj#L66-L70
https://jepsen.io/analyses/cockroachdb-beta-20160829/comments-history.txt


Process 24 invokes a read. Process 23 invokes and com-
pletes a write of 425, inserting a fresh row. Process 21
then invokes and completes a write of 430. Process 24
then completes its read, observing 430 but not 425.

{:valid? false,
:errors
[{:type :ok,

:f :read,
:process 24,
:time 11917285915,
:missing #{425},
:expected-count 62}
{:type :ok,
:f :read,
:process 22,
:time 11920656771,
:missing #{425},
:expected-count 62}]},

Serializability requires there exists a total order for all
transactions, and it’s easy to construct one here: T2, T3,
T1. However, this order is not consistent with the real-
time bounds implied by linearizability: T1 takes effect
after T2 despite T1 completing before T2 even begins.
This system may still be linearizable, but only when
discussing single keys. Our intuition breaks down for
multi-key transactions—even read-only ones. In these
circumstances, we may fail to observe the most recent
transactions.

Cockroach Labs calls this anomaly a “causal reverse”—
we’re not sure if there’s a formal name for it. Observing
inserts out of temporal (even causal!) order is a subtle
example of the difference between serializability and
strict serializability: CockroachDB chooses the former
for performance reasons, although an experimental op-
tion can, in theory, recover strict serializable behavior.
Users could also obtain causal consistency (up to lin-
earizability) by threading a causality token through
any transactions that should be strictly ordered: Liv-
ing Without Atomic Clocks describes how this feature
would work in CockroachDB, but it doesn’t exist yet.

This anomaly occurs even when clock offsets remain
within bounds.

2.6 Monotonic test

The monotonic tests are unique to CockroachDB, and
verify that CockroachDB’s transaction timestamps are
consistent with logical transaction order. In a trans-
action, we find the maximum value in a table, select
the transaction timestamp, and then insert a row with

a value one greater than the maximum, along with
the current timestamp, the node, process, and table
numbers. When sorted by timestamp, we expect that
the values inserted should monotonically increase, so
long as transaction timestamps are consistent with the
database’s effective serialization order.

CockroachDB’s design allocates nearby rows in the
same table to the same Raft cluster, which linearizes
operations on those rows. As tables grow larger, Cock-
roachDB scales by sharding tables into disjoint ranges,
each backed by an independent Raft cluster. Because
the the datasets we work with in Jepsen are small,
and we still want to verify the inter-range transac-
tion path, we need a way to force transactions to cross
range boundaries. This is whyCockroachDBhasmulti-
table variants of the bank and monotonic tests: tables
usually occupy distinct ranges, so accessing multiple
tables helps ensure we exercise CockroachDB’s two-
phase commit transaction mechanism.

For the monotonic tests, Cockroach Labs designed
monotonic-multitable: a variant which splits its oper-
ations across multiple tables. This test also verifies
its order in a different way from the single-table test:
instead of deriving each inserted value from the cur-
rent values in the table, it uses a client-local, mono-
tonic counter (shared between all clients) to generate
sequential values, and wraps every operation against
the database in a lock. Because inserts occur in strict
sequential order, we can verify whether the database’s
timestamps are externally consistent.

There is, however, a problem with this approach: it
relies on the integrity of the lock which prevents two
processes from inserting concurrently. When a client’s
request times out, that process releases its lock—if we
didn’t have a timeout, the test could block forever as
soon as a failure occurred. Timeouts, however, do not
guarantee that the client’s operation didn’t take place.
It’s possible for a client to insert value = 1, time out,
insert value = 2, complete that insert successfully,
then have the insert for 1 take place: creating the non-
monotonic conditions which lead to a false positive.

Accordingly, we merged the two monotonic tests. To ex-
ercise the cross-range pathway, monotonic now reads
the maximum value across several tables, and inserts
value + 1 to one of those tables at random. To avoid
the mutex issue, the test chooses values based on the
current table state, not a local counter. We also fixed
a number of bugs in the code that evaluates histories;
it would fail to recognize non-monotonic histories, and
didn’t report failures correctly.

We found something new. Something… exciting.

5

https://jepsen.io/analyses/cockroachdb-beta-20160829/comments-results.edn
https://groups.google.com/d/msg/cockroach-db/zdDAgmFlRHs/fja_XKYbyFYJ
https://groups.google.com/d/msg/cockroach-db/zdDAgmFlRHs/fja_XKYbyFYJ
https://www.cockroachlabs.com/blog/living-without-atomic-clocks/
https://www.cockroachlabs.com/blog/living-without-atomic-clocks/
https://github.com/jepsen-io/jepsen/blob/4d402bae4a216632a897be8f0795a6eff0462837/cockroachdb/src/jepsen/cockroach/monotonic.clj#L53-L62
https://github.com/jepsen-io/jepsen/blob/4d402bae4a216632a897be8f0795a6eff0462837/cockroachdb/src/jepsen/cockroach/monotonic.clj#L53-L62
https://github.com/jepsen-io/jepsen/blob/4d402bae4a216632a897be8f0795a6eff0462837/cockroachdb/src/jepsen/cockroach/monotonic.clj#L114-L126


(({:val 237,
:sts 14728461807552637410000000006N,
:node 4,
:process 29,
:tb 1}
{:val 236,
:sts 14728461807552637410000000006N,
:node 1,
:process 26,
:tb 1})

({:val 1602,
:sts 14728463404614945530000000009N,
:node 3,
:process 28,
:tb 0}
{:val 1602,
:sts 14728463404614945530000000009N,
:node 2,
:process 27,
:tb 1}))

Not only do we observe non-monotonicity (decreasing
values with increasing timestamps), but there’s also a
serializability violation! Because each transaction in-
serts a value strictly larger than any existing value in
the table, we should never see a duplicate value. How-
ever, at the end of this test, we find two copies of 1602:
both with the same timestamp :sts.

To prevent transactions from overwriting data that has
been read by some other transaction, CockroachDB
stores every read in a structure called the timestamp
cache. If a transaction T1 attempts to write a key, and
the cache determines that another transaction T2 has
read the value at a higher timestamp, it might impact
T2’s correctness if T1 were allowed to change that key.
To avoid breaking T2, T1 aborts. The timestamp cache
also ensures that a transaction can update keys it read
previously, so long as it still owns the cache entry.

However, there’s a bug: when two transactions T1 and
T2 have the same timestamp, and access the same key,
they are considered equivalent: the transaction ID is
not used to discriminate between timestamp cache en-
tries. T2 is allowed to assume T1’s cache entry.

Imagine T1 and T2 intend to scan two tables A and B,
find the largest value v, and insert v + 1 into one of

those tables, selected at random. Both have the same
transaction timestamp 10. T1 scans A and creates a
timestamp cache entry [T1, A, 10]. Concurrently, T2
scans B and creates [T2, B, 10]. T1 proceeds to B, and
because the timestamp cache only checks for equiva-
lence on the basis of key range and timestamp, replaces
T2’s entry with [T1, B, 10]. T2 does the same on A:
[T2, A, 10]. No writes have transpired, so both trans-
actions see identical maximum values v = 50, and
prepare to insert v = 51. T1 inserts into B, and the
timestamp cache entry for B [T1, B, 10] matches, so it’s
allowed to write. T2 can do the same on A. We wind up
with two copies of v = 51: a serializability violation.

This anomaly could occur whenever timestamps
collide—for instance, due to clock offset, including
those well below CockroachDB’s threshold. To fix this
issue, newer versions of CockroachDB now clear the
transaction ID for overlapping timestamp cache en-
tries with identical timestamps. This allows two read-
only transactions to proceed with the same timestamp,
but if either performs a write, it will be forced to retry.

2.7 Sets

The set test inserts a sequence of unique integers into a
table, then performs a final read of all inserted values.
Normally, Jepsen set tests verify only that successfully
inserted elements have not been lost, and that no un-
expected values were present, but Cockroach Labs ex-
tended the checker to look for duplicated values as
well—a multiset test.

This test passed consistently, until a refactor changed
its behavior by chance. Originally, every test’s
database operations went through the same path, in-
cluding timeouts, error handling, and a BEGIN ...
COMMIT transaction wrapper. The set test’s insertions
used this transaction pathway. When we refactored
the connection error-handling code to allow for fine-
grained control over transaction retries, we replaced
the set test’s transaction with a plain insert statement,
since it has no need for a multi-statement transaction
wrapper.

After a few hours of testing, the test emitted this fail-
ing case:

{:duplicates [788 785 792 794 793],
:valid? false,
:revived "#{}",
:lost "#{}",
:recovered
"#{333 337..485 772..774 781..1047 1051..1052 1055..1056 1058..1061 1063

1065..1066}",

6

https://www.cockroachlabs.com/blog/serializable-lockless-distributed-isolation-cockroachdb/
https://www.cockroachlabs.com/blog/serializable-lockless-distributed-isolation-cockroachdb/
https://github.com/cockroachdb/cockroach/issues/9083
https://github.com/cockroachdb/cockroach/issues/9083
https://github.com/cockroachdb/cockroach/issues/9083
https://github.com/jepsen-io/jepsen/blob/4d402bae4a216632a897be8f0795a6eff0462837/cockroachdb/src/jepsen/cockroach/sets.clj#L119-L125
https://github.com/jepsen-io/jepsen/blob/4d402bae4a216632a897be8f0795a6eff0462837/cockroachdb/src/jepsen/cockroach/sets.clj#L59-L61
https://github.com/jepsen-io/jepsen/blob/e39530acddbaaf3c4455d666f8d624b0150b20e1/cockroachdb/src/jepsen/cockroach/sets.clj#L115
https://github.com/jepsen-io/jepsen/blob/4d402bae4a216632a897be8f0795a6eff0462837/cockroachdb/src/jepsen/cockroach/sets.clj#L120
20161015T015705.000Z.zip
20161015T015705.000Z.zip


:ok
"#{0..332 334..336 486..771 775..780 1048..1050 1053..1054 1057 1062 1064}",
:recovered-frac 431/1067,
:unexpected-frac 0,
:revived-frac 1,
:unexpected "#{}",
:lost-frac 0,
:ok-frac 636/1067},

In this test, we found five duplicate values: 788, 785,
792, 794, and 793. These documents were inserted just
as a network partition was beginning:

78 :invoke :add 785
167 :invoke :add 786
:nemesis :info ["majring" :start] ...
159 :invoke :add 787
153 :invoke :add 788
151 :invoke :add 789
157 :invoke :add 790
179 :invoke :add 791
175 :invoke :add 792
170 :invoke :add 793
150 :invoke :add 794

And all timed out:

178 :info :add 785 :timeout
167 :info :add 786 :timeout
159 :info :add 787 :timeout
153 :info :add 788 :timeout
151 :info :add 789 :timeout
186 :invoke :add 809
157 :info :add 790 :timeout
179 :info :add 791 :timeout
191 :invoke :add 810
175 :info :add 792 :timeout
170 :info :add 793 :timeout
150 :info :add 794 :timeout

However, in the final read, we found two rows for each
of these five values. They appear once in insertion or-
der, and again, interleaved at the end of the table.

477 :ok :read [0 1 2 3 4 5 ... 770 771 772
773 774 775 776 777 778 779 780 785 788
792 793 794 ... 1050 1052 1053 1054 1057
1059 1061 1062 1064 1065 800 805 797 789
801 796 1051 1056 1060 788 785 795 806
799 798 793 792 794 787 791 807 782 802
804 783 1066 1063 1058 1055 803 790 781
786 784]

Could the client have retried these insertions, leading
to duplicates? Yes, but only if CockroachDB indicated
the transaction had aborted due to conflict and could
be safely retried. The history tells us that this is not
a client retry at play—the client timed out and gave
up inserting these values well before values like 1060
were even attempted. Somethingmore subtle is at play
here.

In this test, statements like INSERT INTO sets
VALUES (788); execute with an implicit autocommit,
which means the database is free to make some opti-
mizations. In particular, because the DB knows the
full scope of the transaction in advance, and it inserts
only a single key, no two-phase commit is required.
CockroachDB executes the insert in a single phase.

Now things get interesting. The write arrives on some
node, and is committed locally. However, due to a
network failure, the response is lost, and the Cock-
roachDB node coordinating the transaction doesn’t
know what happened. When the network heals, the
RPC system on the coordinator retries the request, but
the retry fails with WriteTooOldError: time has ad-
vanced since the original write. The RPC layer hands
that error to the coordinator’s transaction state ma-
chine. Since a WriteTooOldError indicates that the
coordinator (or the client) should retry the transaction,
the coordinator picks a new transaction timestamp and
retries the insert. It gets a new row ID, is success-
fully inserted, and now that node has two copies of that
value.

This is a common problem in distributed systems: in a
normal function call, we assume that an operation ei-
ther succeeds (and returns) or fails (returning an error,
throwing an exception, etc). Across a network, how-
ever, there is a third possibility: an indeterminate re-
sult. Known failures can simply be retried, but indeter-
minate results require careful handling to avoid losing
or duplicating operations.

CockroachDB now has an AmbiguousResultError re-
turn type, which indicates that operations cannot be
transparently retried.

7

https://github.com/jepsen-io/jepsen/blob/4d402bae4a216632a897be8f0795a6eff0462837/cockroachdb/src/jepsen/cockroach/sets.clj#L117
https://github.com/jepsen-io/jepsen/blob/4d402bae4a216632a897be8f0795a6eff0462837/cockroachdb/src/jepsen/cockroach/sets.clj#L117
https://github.com/jepsen-io/jepsen/blob/4d402bae4a216632a897be8f0795a6eff0462837/cockroachdb/src/jepsen/cockroach/sets.clj#L117
https://github.com/cockroachdb/cockroach/issues/10023


3 Discussion

CockroachDB is aiming for a tough target: a scale-out,
transactional, serializable SQL database. To achieve
that goal, they’ve combined Raft consensus for small
ranges of keys, timeout-based leases for leader read
safety, and bounded-error wall clocks, somewhat like
Spanner.

Like Spanner, Cockroach’s correctness depends on the
strength of its clocks. If any node drifts beyond the
clock-offset threshold (by default, 250 ms), all guaran-
tees are basically out the window.3 Unlike Spanner,
CockroachDB users are likely deploying on commodity
hardware or the cloud, without GPS and atomic clocks
for reference. Their clocks may drift due to VM, IO, or
GC pauses, NTP misconfiguration or faults, network
congestion, and so on, especially in certain cloud envi-
ronments.

To mitigate this risk, users should set the Cock-
roachDB clock offset threshold higher than the ex-
pected error in their clocks. Higher thresholds in-
crease the maximum allowable latency for read oper-
ations which conflict with a write, but do not impose a
hard latency floor: unconflicted transactions can pro-
ceed faster. When a node exceeds the clock offset
threshold, it will automatically shut down to prevent
anomalies. However, this mechanism can never be per-
fect: there will always be a few-second window during
which transactional anomalies can occur. This is not
necessarily the end of the world: many systems can tol-
erate occasional invariant violations.

Unlike Spanner, CockroachDB does not provide exter-
nal consistency (e.g. full-database linearizability, or
strict serializability). Transactions on single keys do
appear linearizable but the database as a whole does
not. This choice is partly a performance optimization:
strict serializability requires that CockroachDB block
for the full clock offset limit in more circumstances.

Since CockroachDB’s clocks are generally an order of
magnitude less precise than Spanner’s, this behav-
ior would impose unacceptable costs for most environ-
ments.

CockroachDB’s test suite and pre-existing Jepsen tests
caught most of the low-hanging fruit, but we were able
to uncover two serializability violations over the past
few months. In one case, timestamp collisions exposed
an edge case in the data structure used to detect trans-
action conflicts, allowing two transactions to read and
insert to the same range of keys. In the other, a low-
level RPC retry mechanism converted an indetermi-
nate network failure to an (apparently) definite logical
failure, allowing a higher-level transaction state ma-
chine to retry the entire transaction, applying it twice.

Both of these faults are relatively infrequent: they re-
quired minutes to hours of testing to reproduce at mod-
erate (~20 txns/sec) throughput. Jepsen’s resolving
power in these tests is limited by two factors.

First, Jepsen’s linearizability checker, Knossos, is not
fast enough to reliably verify long histories, or histo-
ries over many keys—and verifying serializability, in
general, is an even harder problem. This means we
must design a family of dedicated, special-case tests for
various anomalies, and each is sensitive to transaction
scope, retry strategy, timing, and key distribution.

Second, CockroachDB is still in beta, and as of the
time of testing (Fall 2016) performed relatively slowly
on Jepsen’s workloads. For instance, on a cluster of
five m3.large nodes, an even mixture of processes per-
forming single-row inserts and selects over a few hun-
dred rows pushed ~40 inserts and ~20 reads per second
(steady-state). These figures were typical across most
tests. High latency windows and low throughput gives
Jepsen fewer chances to see consistency violations. As
database performance improves, so will test specificity
and reproducibility.

3Game over man, game over!

8



In the latest betas, CockroachDB now passes all the
Jepsen tests we’ve discussed above: sets, monotonic,
g2, bank, register, and so on—under node crashes,
node pauses, partitions, and clock offset up to 250 mil-
liseconds, as well as random interleavings of those
failure modes. The one exception is the comments
test, which verifies a property (strict serializability)
which CockroachDB is not intended to provide. Cock-
roach Labs has merged many of these test cases back
into their internal test suite, and has also integrated
Jepsen into their nightly tests to validate their work.

In recent months, Cockroach Labs has put significant
investment into both correctness and performance.
There’s still a lot of work to do before CockroachDB
is suitable for general release, but putting time into
safety early in the development process has paid off:
CockroachDB uses established algorithms and stor-
age systems, has an extensive internal test suite, and

has performed their own Jepsen tests in addition to
the present work. CockroachDB’s reliance on semi-
synchronized clocks must be considered by operators,
but the fact that nodes shut down due to high clock off-
set means that operators will have a good idea whether
constraints are being violated–and the window for in-
variant violation is limited by that shutdown process
as well. I look forward to seeing Cockroach Labs make
their first general release.

This research was funded by Cockroach Labs, and con-
ducted in accordance with the Jepsen ethics policy. I am
indebted to their entire team for their help understand-
ing CockroachDB’s semantics, internals, and existing
tests. I would especially like to thank Raphael ‘kena’
Poss, Arjun Narayan, Tobias Schottdorf, Andrei Matei,
Matt Tracy, Peter Mattis, Ben Darnell, and Irfan Sharif
for their time, expertise, and good cheer.

9

https://www.cockroachlabs.com/blog/better-sql-joins-in-cockroachdb/
http://jepsen.io/ethics.html

	Background
	Tests
	Register
	Bank
	Sequential
	G2
	Comments
	Monotonic test
	Sets

	Discussion

