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Datomic is a temporal Entity-Attribute-Value OLTP database which supports non-interactive transactions on
top of pluggable storage engines. It offers a variety of query mechanisms across thick and thin clients, includ-
ing Datalog, graph traversal, and an ODM-style API. We evaluated Datomic Pro 1.0.7075 and found its inter-
transaction safety properties appear stronger than claimed. Not only was every history Serializable, but ses-
sions bound to a single peer appear Strong Session Serializable, and histories restricted to write transactions
and reads using d/sync appear Strong Serializable. However, inside of a transaction Datomic behaves as if
operations were evaluated concurrently. Depending on how one interprets those operations, this might violate
three of the most widely accepted formalizations of Serializability, each of which specify serial intra-transaction
semantics. It also creates the potential for invariant violations when composing transaction functions. Datomic
has published a companion blog post alongside this report. This work was funded by Nubank (Nu Pagamentos
S.A), and conducted in accordance with the Jepsen ethics policy.

1 Background

Datomic is a general-purpose database intended for
systems of record. In many ways, Datomic is unusual.
At any instant in time, the state of the database is
represented by a set of [entity, attribute, valuel
(EAV) triples, known as datoms. Each datom de-
clares that some entity (like a person) has a particu-
lar attribute (like a name) with a specific value (like
“Vidrun”). The types and cardinality of attributes are
controlled by a schema.

Datomic is also a temporal database: it models time
explicitly. Every transaction is identified by a strictly
monotonic logical timestamp t, as well as a wall-clock
time txInstant. Transactions can assert a datom,
adding it to the database, or they can retract a datom,
removing it from the database. Every datom also
retains a reference to the transaction that asserted
or retracted it. A full datom is therefore a five-
tuple of [entity, attribute, value, transactionm,
asserted-or-retracted?]. The database is an ever-
growing set of these tuples.’

Users can request a snapshot state of the database
at any logical or wall-clock time—right now or years
in the past. They can also obtain a full view of the
database’s history, allowing users to ask questions
like “was there ever a time when Janelle Monde and
Cindi Mayweather were recorded in the same room to-
gether?”

Given a state of the database, users may query it via a
Datalog-style API, a declarative graph traversal API,
or an ODM-style Entity datatype which allows lazy

access to an entity’s associated values, including other
entities.

Datomic comes in two flavors. In this report we dis-
cuss Datomic Pro, which anyone can run on their own
computers. Datomic Cloud runs in AWS and uses a
somewhat different architecture.

1.1 Architecture

Datomic Pro comprises several co-operating services.
Transactors execute write transactions, maintain in-
dices, and write data to storage. Peers are thick
clients: they embed a JVM library which submits
transactions to transactors, executes read queries
against storage, and caches results. For applications
written in other languages, Datomic also has a tra-
ditional client-server model. Clients are thin clients
which forward transactions and queries to a peer
server: a peer which runs a small network API.

Internally, Datomic appends each transaction to the
log: a time-ordered set of transactions. From the log
Datomic maintains four indices sorted by different per-
mutations of entity, attribute, value, and time. These
indices allow efficient queries like “which entities were
modified yesterday,” or “who run the world?”?

Both log and indices are stored as persistent, im-
mutable trees in a data store like Cassandra or Dy-
namoDB. Because tree nodes are immutable, their
backing storage only needs to guarantee eventual
consistency. A small pointer to the roots of these
trees provides a consistent, immutable snapshot of
the database’s state. To commit a transaction, a
transactor saves new immutable tree nodes to storage,
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then executes a compare-and-set (CaS) operation to
advance the root pointer. This CaS operation must
execute under Sequential consistency.

Using a Sequential CaS operation ensures a global
order of transactions, and limits Datomic’s write
throughput to the speed of a single transactor. To
reduce contention, Datomic tries to have a single ac-
tive transactor at all times. Operators typically deploy
multiple transactors for fault tolerance.

Peers connect directly to storage, and also to transac-
tors. Transactions are forwarded to an active trans-
actor, which executes them. Each peer also main-
tains a local, monotonically-advancing copy of the root
pointer, which allows the peer to read tree nodes from
storage. Since tree nodes are immutable, they can be
trivially cached. There may be any number of peers,
allowing near-linear read scalability.

1.2 Transaction Model

Datomic has an unusual transaction model. Most
OLTP databases offer interactive transactions: one
begins a transaction, submits an operation, receives
results from that operation, submits another, and so
on before finally committing. Some databases, like
VoltDB, use stored procedures: an operator writes
a small program which is installed in the database.
Clients invoke that program by name, which mutates
database state and returns values to the client. Other
databases like FaunaDB allow clients to directly sub-
mit miniature programs as text or an abstract syntax
tree. Like stored procedures, these programs perform
arbitrary reads and writes, mutate state, and return
data to the user.

Datomic does something rather different. It enforces a
strict separation between read and write paths. There
are no interactive transactions. It has stored proce-
dures, but they cannot return values to the caller.

A read obtains an immutable state of the entire
database. For instance, the db function returns the
most recent database state® the peer is aware of. To
obtain the most recent state across all peers, or a state
later than a given time, one calls d/sync. To obtain a
state from a past time (seconds or years ago), one calls
d/as-of. These states are cheap, highly cacheable, and
never block other writers or readers.

Given a database state, one can run any number of
queries using (e.g.) q or pull. Queries lazily fetch
datoms from cache or storage. Since database states
are immutable, any number of queries run against the

same state occur at the exact same logical time. In this
sense, all queries run on the same state take place in a
single atomic transaction—even two queries executed
on different machines, months apart.

Write transactions* are represented as an ordered list
of operations.®

A transaction is simply a list of lists and/or
maps, each of which is a statement in the
transaction.

For example, here is a transaction of three operations,
all involving entity 123:

[[:db/add 123 :person/name "N. K. Jemisin"]
[:db/cas 123 :author/hugo-count 2 3]]
[:author/add-book 123 "The Stone Sky"]]

Those operations may be simple assertions (:db/add)
or retractions (:db/retract) of datoms, or they may
be calls to transaction functions: either built-in or
user-defined. In this example, the built-in db/cas
function performs a CaS operation, asserting the num-
ber of Hugo awards for this author is 3 if and only
if that number is currently 2. One can also store a
function (represented as a Clojure AST or Java string)
in the database just like any other value. Alterna-
tively, one may write a function in any JVM language,
and provide it in a jar file on the transactor’s class-
path. Once a function has been installed, any trans-
action may invoke it by providing the function’s name
and arguments. Here, the author/add-book function
receives the state of the database as of the start of
the transaction, as well as any arguments from the
transaction. It can perform arbitrary (pure) computa-
tion, including running queries against the database
state. It then returns a new set of operations for
the transaction—for instance, assertions, retractions,
or calls to other functions. Function calls are recur-
sively expanded until only assertions and retractions
remain.

While transaction functions can make decisions based
on the results of reads they perform internally, there is
no channel to return those reads (or other information)
to the caller of transact. Transactions only return ef-
fects. This means there is no direct analogue for an
arbitrary read-write transaction in Datomic! For ex-
ample, you can write a function which performs a con-
ditional write, but you can’t inform the caller whether
the write took place or not. This constraint nudges
Datomic users towards pulling reads out of the write
transaction path—a key factor in obtaining good per-
formance from a system which can logically execute
only one write transaction at a time.

3Datomic refers to an immutable version of the database as a “value”. To avoid confusion with other kinds of values in this report,

we call this a “database state”.

4Most systems use “transaction” to refer to a group of operations, including reads or writes, executed as a unit. Datomic uses “trans-
action” to refer specifically to a write transaction—i.e. a call to d/transact. However, Datomic’s reads are trivially transactional
as well. We refer to both reads and writes as transactions in this work—it significantly simplifies our discussion of consistency

models.
5At the start of our collaboration, Datomic used “statement”,

operation”, and “data” to refer to elements of a transaction. We use

“operation” in this report for consistency with the database literature, and to avoid confusion with other kinds of data. Datomic
intends to refer to transaction elements solely as “data” going forward.

5Datomic wishes to note that transaction functions (for instance, db/cas) do not actually perform writes. They produce data struc-
tures which represent requests for writes. Those writes are performed during the final stages of transaction execution. Delayed
evaluation of transaction effects is a common database technique; we use the term “write” loosely with this understanding.
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Instead of offering arbitrary return values from trans-
actions, every call to transact returns the database
state just before the transaction, the database state
the transaction produced, and the set of datoms the
transaction expanded to. This allows callers to ex-
ecute read-write transactions by splitting them in
twain: they submit a transaction which performs
some writes, then use the pre-state of the database
to determine what data that transaction would have
read. Peers can also examine the post-state and set
of datoms produced by the transaction to (e.g.) deter-
mine whether a conditional write took place.

From the perspective of traditional database systems,
this sounds absurd. Mixed read-write transactions
are a staple of OLTP workloads—how could you get
anything done without them? Datomic offers a view
of an alternate universe: one where database snap-
shots are cheap, efficient, and can be passed from
node to node with just a timestamp. From this point
of view, other databases feel impoverished. What do
you mean, Postgres can’t give you the state of the en-
tire database a transaction observed? The lack of a
return channel for transaction functions may be an-
noying, but Datomic’s other strengths generally al-
low it to solve the same kinds of problems as a tradi-
tional, interactive transaction system. For example,
NuBank (Datomic’s current developers) offers finan-
cial services to nearly 94 million users, processing an
average of 2.3 billion user transactions per day. Al-
most all of their products use Datomic as a system of
record.

1.3 Consistency

Datomic advertises ACID transactions and means it:
their ACID documentation makes detailed, specific
promises with respect to consistency models and dura-
bility guarantees. Transactions are “written to stor-
age in a single atomic write,” which precludes inter-
mediate read anomalies. Every peer “sees completed
transactions as of a particular point in time,” and
observes all transactions, totally ordered, up to that
time. Transactions are always flushed to durable stor-
age before client acknowledgement.

When our analysis began in early January 2024,
Datomic’s documentation informally claimed write
transactions were Serializable:

The Isolation property ensures that concur-
rent transactions result in the same system
state that would result if the transactions
were executed serially.

Since write transactions are Serializable and exe-
cute atomically, and since read-only queries execute
against committed snapshots, it seems plausible that
histories of both read and write transactions should
also be Serializable.”

Serializability does not impose real-time or session or-
dering constraints: in a Serializable system, it is legal
for a client to execute a transaction which inserts ob-
ject x, then execute a second transaction which fails
to observe x. While Datomic’s documentation does
not make this claim, it seems plausible that Datomic’s
transactor design might provide Strong Serializability
over write transactions, preventing real-time anoma-
lies.

Since d/db returns an asynchronously updated copy of
the database, we expect peers to observe stale reads.
Indeed, Datomic is explicit that peer reads may not
observe some recently committed transactions. How-
ever, it would be straightforward for peers to ensure
that their time basis advances monotonically; if we say
that every session is bound to a single peer node, we
would expect to observe Strong Session Serializable
histories.

In addition to these possible realtime and session con-
straints, Datomic has multiple synchronization mech-
anisms. Clients can block until they observe a value
of the database at or later than some time t. This
enables clients to ensure consistency when threading
state through side channels. Calling d/sync forces
the client to synchronize with the transactor, prevent-
ing stale reads. We expect histories which always use
d/sync to be Strict Serializable as well.

Datomic’s documentation also described it as a “single-
writer” system:

A single thread in a single process is re-
sponsible for writing transactions. The Iso-
lation property follows automatically from
this, because there are no concurrent trans-
actions. Transactions are always executed
serially.

This is wrong in two senses. First, Datomic is fault-
tolerant: one can and should run several transactor
nodes on different computers. Typically one transac-
tor is active and the others are in standby. When a
transactor’s failure detector believes there is no active
transactor, it will attempt to promote itself to active.
However, perfect failure detectors are impossible in
asynchronous networks. There may be times when a
standby transactor believes it should take over, but
another active transactor is still running. This means
transactions may actually execute concurrently. Dur-
ing this window Datomic is not a single-writer system,
but a multi-writer one!

Second, even if there were a perfect failure detector
which ensured a single Datomic transactor at a time,
its messages to storage could be arbitrarily delayed
by the network and arrive interleaved with messages
from other transactors. Thankfully this doesn’t mat-
ter: Datomic’s safety property follows directly from the
Sequential consistency of the storage system’s CaS op-
eration. Any number of concurrent transactors ought
to be safe.

7As Fekete, O’Neil, and O’Neil point out, adding read-only transactions to a history which is otherwise Serializable can actually
yield non-Serializable histories! However, this paper applies specifically to Snapshot Isolation, where two transactions may read
the same state and write new values concurrently. Datomic’s design ensures transactions are atomic, in the sense that no two
transactions overlap in the window between their read and write timestamps.


https://docs.datomic.com/pro/transactions/transactions.html
https://docs.datomic.com/pro/transactions/acid.html
https://web.archive.org/web/20231208204951/docs.datomic.com/pro/transactions/acid.html#isolation
https://jepsen.io/consistency/models/serializable
https://jepsen.io/consistency/models/strict-serializable
https://cs.uwaterloo.ca/~kmsalem/pubs/DaudjeeICDE04.pdf
https://jepsen.io/consistency/models/strict-serializable
https://docs.datomic.com/pro/transactions/client-synchronization.html
https://docs.datomic.com/pro/transactions/client-synchronization.html
https://dbmsmusings.blogspot.com/2019/06/correctness-anomalies-under.html
https://docs.datomic.com/pro/transactions/client-synchronization.html
https://docs.datomic.com/pro/clojure/index.html#datomic.api/sync
https://web.archive.org/web/20231208204951/https://docs.datomic.com/pro/transactions/acid.html#isolation
https://web.archive.org/web/20231208204951/https://docs.datomic.com/pro/transactions/acid.html#isolation
https://docs.datomic.com/pro/operation/ha.html#enabling
https://www.cs.utexas.edu/~lorenzo/corsi/cs380d/papers/p225-chandra.pdf
https://docs.datomic.com/pro/transactions/acid.html#implications
https://docs.datomic.com/pro/transactions/acid.html#implications
https://www.cs.umb.edu/~poneil/ROAnom.pdf
https://www.cs.umb.edu/~poneil/ROAnom.pdf

2 Test Design

We designed a test suite for Datomic using the Jepsen
testing library. Our test installed Datomic Pro
1.0.7075 on a cluster of Debian Bookworm nodes. For
storage, it provisioned a DynamoDB table in AWS.
Two of the test nodes ran transactors, and the remain-
ing nodes ran peers.

Our peers were small Clojure programs which used
the Datomic peer library. They connected to storage
and transactors and exposed a small HTTP API for
performing test suite operations. For each operation
the test used an HTTP client to submit that opera-
tion to some peer. The peer executed that operation
using the peer library, and returned a result to the
client. We ran our workloads both using d/db, which
may yield stale reads, and also with d/sync, which
blocks but guarantees recency.

Our test harness injected faults into both transac-
tors and peers, including process pauses, crashes, and
clock errors. We created network partitions between
nodes (including both transactors and peers) and be-
tween nodes and the storage system. We also re-
quested Datomic perform garbage collection.

Datomic transactors kill themselves when they cannot
maintain a stable connection to storage. When we ran
transactors with the default 5-second timeout settings
on nodes outside AWS, transactors routinely killed
themselves every few minutes due to normal network
fluctuations. With a 1-second timeout, even transac-
tors running in our EC2 test environment would kill
themselves roughly every 10—20 minutes. To work
around this, Datomic advises that operators run their
own supervisor daemons to restart transactors. We
used a systemd service with Restart=on-failure.

Our test suite included four workloads.

2.1 List Append

We designed an append workload for use with the Elle
transaction checker. Logically, this workload operates
over lists of integer elements, with each list identi-
fied by an integer primary key. Clients perform trans-
actions comprising random operations. Each opera-
tion may read the current value of a list, or append a
unique element to the end of a list. Elle then performs
a broad array of checks on the history of transactions.
It looks for aborted and intermediate reads, violations
of internal consistency, and inconsistent orders of el-
ements across different reads of a list. From the el-
ement orders, it infers write-write, write-read, and
read-write dependencies between transactions. From
the order of transactions on each logical process, and
the global order of transactions, it infers per-process
and real-time orders, respectively. Elle then searches
for cycles in the resulting dependency graphs. Various
cycles correspond to violations of different consistency
models, like Strict Serializability.

We encoded our lists in Datomic as follows. Each list
was represented by a single entity with two attributes.
One, append/key, served as the primary key. The
other, append/elements, was a many-valued attribute
which stored all the integer elements in a given list.

Performing the writes in a transaction was straight-
forward: given a write, we emitted a single operation
for the transaction stating that the given key now had
that element: {:append/key k, :append/elements
element}. To perform a read of k, we read a local cache
of k’s elements. We populated that cache with an ini-
tial series of read queries, then used a small state ma-
chine to simulate internal reads.

Note that multi-valued attributes represent an un-
ordered set, not an ordered list. Elle’s inference uses
the order of list elements to infer the serialization
order of transactions. To obtain this order, we took
advantage of the fact that Datomic is a temporal
database: every datom includes a reference to the
transaction which wrote it. When we read the ele-
ments for a given key, we also included their corre-
sponding transactions. We then sorted the elements
by transaction times, which provides exactly the order
Elle needs.

Elle’s list-append workload is designed for databases
which offer mixed read-write transactions, but
Datomic doesn’t have this concept. As previously men-
tioned, any read-write transaction can be expressed
in Datomic by running the writes in a transaction
function, then using the returned database state to
determine what the transaction’s reads would have
been. We used this technique in our workload: a
single function executes the transaction, simulates in-
ternal reads, and produces side effects (for the write
transaction) and completed reads (to be returned to
the client). We execute this function twice: once using
a stored procedure via transact, then a second time
on the peer to fill in reads, using the pre-state of the
database transact returned.

2.2 List Append with CaS

Many Datomic users use the built-in compare-and-set
function db/cas to control concurrent updates to an
attribute of an entity outside a transaction. For exam-
ple, they might read the current DB state using d/db,
read the value of a counter as 4, then increment the
counter’s value using [:db/cas 123 :counter/value
4 5]. The CaS function asserts the new value 5 if and
only if the current value is 4.

Datomic guarantees transactions are always Serializ-
able, but a user might want to express a logical “user
transaction” consisting of a read followed by a separate
write transaction. Since Datomic database states are
always complete snapshots, and transactions are Se-
rializable, using db/cas for every write® allows users
to build an ad hoc Snapshot Isolation over these user
transactions.

8We say “every” write for safety and clarity. In practice, users often arrange for all transactions requiring concurrency control to
conflict on a single attribute of an entity. A single CaS operation on, say, a customer’s version attribute could ensure that any

number of updates to that customer occur sequentially.
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Our append-cas workload provides the same logical
API as the list-append workload, but uses this CaS pat-
tern to ensure Snapshot Isolation. Instead of multi-
valued elements, we encoded each list as a single-
valued, comma-separated string. We performed aread
at the start of each transaction, applied reads and
writes locally, maintaining a buffer of written val-
ues, then constructed a transaction of CaS operations
which ensured that any values we wrote had not been
modified since they were read.

2.3 Internal

Our two list-append workloads measured safety be-
tween transactions, but because they simulated the re-
sults of internal reads, they did not measure Datomics
intra-transaction semantics. We designed an internal
workload which measures internal consistency with
a suite of hand-crafted transactions. For instance,
we assert that the value for some attribute of an en-
tity is 1, then 2. We assert and retract a fact in
the same transaction. We assert a value, then try to
CaS it to something else. We perform multiple CaS
operations—trying to change 1 to 2, then 2 to 3. We
create an entity, then modify it using a lookup ref. Us-
ing a transaction function, we attempt to increment a
value twice, and so on.

2.4 Grant

To ensure that transaction functions preserved func-
tion invariants, we designed a grant workload which
simulates a simple state machine using transaction
functions. Grants are first created, then can either be
approved or denied. We encode a grant as a single en-
tity with three attributes: created-at, approved-at,
and denied-at.

No grant should be both approved and denied. We en-
sure this invariant by writing a pair of transaction
functions approve and deny. Each first checks that
the grant under consideration has not been approved
or denied already, aborting the transaction if neces-
sary. If the grant hasn’t been approved or denied yet,
approve adds the grant’s approved-at date. Our deny
function works the same way.

Our grant workload creates a new grant in one trans-
action. In subsequent transactions it tries to approve
and/or deny the grant. We repeat this process, explor-
ing different combinations of functions and transac-
tion boundaries. We check to make sure that no grant
is both approved and denied.

3 Results

We found no behavior which violated Datomic’s core
safety claims. Transactions appeared to execute as if
they had been applied in a total order, and that order
was consistent with the local order of operations on
each peer. Histories restricted to just those transac-
tions performing writes, and histories in which reads

used (d/sync conn) to obtain a current copy of the
database, were consistent with real-time order.

However, we did observe unusual behavior within
transactions. This intra-transaction behavior is gen-
erally consistent with Datomic’s documentation, but
it represents a significant departure both from typical
database behavior and the major formalisms used to
model transactional isolation. We discuss those diver-
gences here.

3.1 Internal Consistency

Virtually all databases and formalisms Jepsen is fa-
miliar with provide serial execution semantics within
a transaction. For example, a transaction like set x
= 1; read x; would print 1, rather than the value of
x when the transaction started.

Although Datomic transactions are ordered lists of
operations, Datomic does not preserve this order in
execution. Instead, all operations within a transac-
tion (adds, retracts, and transaction functions) are ex-
ecuted as if they were concurrent with one another.
Transaction functions always observe the state of the
database at the beginning of the transaction. They
do not observe prior assertions, retractions, or trans-
action functions. For example, consider these results
from our internal workload. Imagine entity 123 cur-
rently has an :internal/value of 0, and we execute
the following transaction:

[[:db/cas 123 :internal/value 0 1]
[:db/cas 123 :intermal/value 0 1]]

In a serial execution model, this transaction would fail:
the first CaS would alter the value of key 123 from
0 to 1, and the second CaS would fail, since the cur-
rent value was 1 and not 0. In Datomic, both CaS op-
erations observe the initial state 0, and both succeed.
They produce a pair of redundant assertions [:db/add
123 :interval/value 1], and the value of entity 123
becomes 1.

This means that state transitions may not compose as
one expects. For instance, here is a transaction func-
tion that increments the value of the entity with key
k:

(defn increment
[db k]
(let [{:keys [id valuel} (read db k)]
[[:db/add id :internal/value (inc value)]]))

What value does the following transaction produce,
given an entity with key "x" and value 0?

[['internal/increment "x"]
['internal/increment "x"]]

In a serial model, the result of two increments would
be 2. In Datomic, it’s 1: both increment functions re-
ceive the database state from the start of the transac-
tion. Similarly, transaction functions do not observe
lexically prior assertions or retractions.

[[:db/add id-of-x :internal/value 1]
['internal/increment "x"]]
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This produces a final value of 1, not 2.

Likewise, lookup refs use the state of the database as
of the start of the transaction. This means a trans-
action which adds an entity cannot use a lookup ref
to refer to it later in that same transaction. The fol-
lowing transaction aborts with an Unable to resolve
entity message:
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[; Create an entity with key "z
[:db/add "x" :internal/key "x"]

; And set the wvalue of the entity with key
; to O:

executed in the same transaction! While Datomic’s
in-transaction conflict checker prevents conflicts on a
(single-cardinality) [entity, attribute] pair, it does
nothing to control concurrency of functions which pro-
duce disjoint [entity, attribute] pairs.

We designed the grant workload to illustrate this
scenario. Following the documentation’s advice that
transaction functions “can atomically analyze and
transform database values,” and can be used to “en-
sure atomic read-modify-update processing, and in-
tegrity constraints,” we wrote a pair of transaction
functions approve and deny. These functions encode

[:db/add [:internal/key "x"] :internal/value Ollthe two legal state transitions for a single grant.

Many of the above transactions included multiple as-
sertion requests with the same entity, attribute, and
value. What happens if the values conflict? Imagine
this transaction executes on a state where x’s value is
0

[[:db/add id-of-x :internal/value 2]
['internal/increment "x"]]

In a database with serial intra-transaction semantics,
this would produce the value 3. In Datomic, the in-
crement observes the start-of-transaction value 0. It
completes successfully, and the transaction expands
to the following:

[[:db/add id-of-x :internal/value 2]
[:db/add id-of-x :internal/value 1]]

If this were executed by a serial database, it would
produce the value 1. But Datomic’s order-free se-
mantics have another rule we have not yet dis-
cussed. If two assertions in the same transaction
have different values for the same single-cardinality
attribute of the same entity, the transaction aborts
with :db.error/datoms-conflict. This transaction
aborts!

This in-transaction conflict detection mechanism
likely rules out many cases where the use of trans-
action functions would produce surprising results. A
pair of increments will silently produce a single in-
crement, but this is only possible because they all
expand to compatible [entity, attribute, valuel
triples. Since there are an infinite number of incom-
patible values, and a single compatible choice for any
[entity, attribute] pair, it seems likely that users
who accidentally compose transaction functions incor-
rectly will find their transactions fail due to conflicts,
and recognize their mistake.

This behavior may be surprising, but it is generally
consistent with Datomic’s documentation. Nubank
does not intend to alter this behavior, and we do not
consider it a bug.

3.2 Pseudo Write Skew

The fact that transactions appear to execute in serial,
but the operations within a transaction appear to ex-
ecute concurrently, creates an apparent paradox. A
set of transaction functions might be correct when ex-
ecuted in separate transactions, but incorrect when

(defn approved?
"Has a grant been approved?"

[db id]
(=> '{:find [?7t]
:in [$ 7id]
:where [[?7id :grant/approved-at ?7t]]}
(d/q db id)
count
pos?))

(defn ensure-fresh
"Throws if the given grant ID
is approved or denied."
[db id]
(when (approved? db id)
(throw+ {:type :already-approved}))
(when (denied? db id)
(throw+ {:type :already-denied})))

(defn approve
"Approves a grant by ID. Ensures the
grant has not been approved or denied."
[db id]
(ensure-fresh db id)
[[:db/add id :grant/approved-at (Date.)]])

The denied? and deny functions are identical to
approved? and approve, except they use the denied-at
attribute; we omit them for brevity.

By ensuring that the given grant ID is fresh (i.e. nei-
ther approved nor denied), these functions ensure an
important invariant: no sequence of approve and/or
deny calls can produce a grant which is both approved
and denied. And indeed, Datomic’s Serializable trans-
actions guarantee this invariant holds—so long as
calls to approve and deny only ever take place in dif-
ferent transactions.

However, if a single transaction happens to call both
approve and deny, something very interesting oc-
curs:

[['grant/approve id]
['grant/deny id]]

This transaction produces a grant with the following
state:

{:db/id 17592186045426,
:grant/created-at #inst "2024-02-01...",
:grant/denied-at #inst "2024-02-01...",

:grant/approved-at #inst "2024-02-01..."}
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This grant is both approved and denied at the same
time. Our invariant has been violated! Datomic’s in-
transaction conflict checker did not prevent this behav-
ior because the approve and deny functions returned
assertion requests for disjoint [entity, attribute]
pairs.

Fresh Grant

\
/

Approve Deny

Denied
Grant

Approved
Grant

AN

Implicit Union
of All Datoms

Approved/Denied
Grant

If we were to draw a data dependency graph between
these two functions using the language of Adya’s for-
malism, we’d see something like the following:

Approve Deny

The approve function wrote a new version of the
grant’s approved-at attribute, but when deny read
that attribute, it observed the previous (unborn)
version from the start-of-transaction database state.
This is analogous to a read-write (rw) anti-dependency
edge in Adya’s Direct Serialization Graph. Sym-
metrically, deny wrote a new version of the grant’s
denied-at attribute, but approve saw the previous un-
born version of denied-at. This gives rise to a de-
pendency cycle: each transaction function failed to ob-
serve the other’s effects.

If these approve and deny boxes were transactions,
we’d call this cycle G2-item: an isolation anomaly pro-
scribed by Repeatable Read and Serializability. In-
deed, this phenomenon is analogous to a concurrency
anomaly Berenson et al called called Write Skew:

Suppose T1 reads x and y, which are consis-
tent with C(), and then a T2 reads x and y,
writes x, and commits. Then T1 writes y. If
there were a constraint between x and y, it
might be violated.

There are some similarities between the inter-
transaction concurrency control of Berenson et al’s
Snapshot Isolation and the intra-transaction concur-
rency control of Datomic’s end-of-transaction conflict
checker. When the write sets (assertion requests) of
two transactions (transaction functions) intersect on
some object (an entity and cardinality-one attribute),
the first-committer-wins principle (conflict checker)
prevents concurrent execution by forcing an abort.
When their write sets are disjoint, invariants pre-
served by two transaction functions individually may
be violated by the transaction as a whole.

Like the internal consistency findings above, this be-
havior may be surprising, but it is broadly consis-
tent with Datomic’s documentation. Nubank intends
to preserve Datomic’s concurrent intra-transaction
semantics. We consider this expected behavior for
Datomic, rather than a bug.

3.3 Entity Predicates

From Datomic’s point of view, the grant workload’s in-
variant violation is a matter of user error. Transac-
tion functions do not execute atomically in sequence.
Checking that a precondition holds in a transaction
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function is unsafe when some other operation in the
transaction could invalidate that precondition!

However, Datomic offers a suite of constraints for en-
forcing database invariants, including type, unique-
ness, and arbitrary predicates on specific attributes.
One of the most general constraints is an entity pred-
icate.

Entity predicates are functions which receive a can-
didate state of the database with all transaction ef-
fects applied, the ID of an entity, and return true if
the transaction should be allowed to commit that state.
“Entity” is something of a misnomer: these predicates
have access to the entire state of the database, and can
therefore enforce arbitrary global constraints, not just
those scoped to a particular entity.

We can use entity predicates to ensure grants are
never approved and denied. To start, we write an en-
tity predicate function valid-grant?.

(defn valid-grant?
[db eid]
(let [{:grant/keys [approved-at denied-at]l}
(d/pull db '[:grant/approved-at
:grant/denied-at]
eid)]
(not (and approved-at denied-at))))

Then we add an entity spec to the schema which refer-
ences that function.

(def schema
(...
{:db/ident :grant/valid?
:db.entity/preds ['grant/valid-grant?]
:db/doc "Ensures the given grant
is not approved *andx*
denied"}])

Unlike other schema constraints, which are enforced
for every transaction, entity specs (and their associ-
ated entity predicates) are only enforced when trans-
actions explicitly ask for them. Datomic believes
that whether or not to enforce an entity spec is a do-
main decision, and that this approach is more flexible
than making entity specs mandatory. Therefore our
transition functions assert the grant’s approved-at
or denied-at attribute, then request the entity spec
be enforced by adding a special request for a virtual
datom, binding the attribute :db/ensure to our entity
spec.

(defn approve

[db id]

[[:db/add id :grant/approved-at (Date.)]

[:db/add id :db/ensure :grant/valid?]])
(defn deny

[db id]

[[:db/add id :grant/denied-at (Date.)]

[:db/add id :db/ensure :grant/valid?]])

Using this entity spec, attempts to approve and deny
a grant within the same transaction throw an error,
preserving our intended invariant.

{:cognitect.anomalies/category
:cognitect.anomalies/incorrect,
:cognitect.anomalies/message
"Entity 17592186045427 failed pred

#'jepsen.datomic.peer.grant/valid-grant?
of spec :grant/valid?",
:db.error/pred-return false,

:db/error :db.error/entity-pred}

4 Discussion

In our testing, Datomic’s inter-transaction semantics
were consistent with Strong Session Serializability.
Intra-transaction semantics appeared strictly concur-
rent: the operations within a transaction seemed to
be executed simultaneously, and the resulting effects
merged via set union. This combination satisfies a
common high-level definition of Serializability: “equiv-
alence to a serial execution of transactions.” However,
it does seem to violate the definitions of Serializability
in the most broadly-adopted academic formalisms for
transactional isolation. Datomic argues—and Jepsen
is willing to entertain—that these formalisms should
not be applied to Datomic; they are fundamentally dif-
ferent kinds of databases.

While some details of the documentation were in-
accurate or misleading, Datomic’s inter- and intra-
transaction behavior appeared consistent with its
core safety claims. Indeed, we believe Datomic’s
inter-transaction safety properties are stronger than
promised.

As always, we caution that Jepsen takes an experi-
mental approach to safety verification: we can prove
the presence of bugs, but not their absence. We also
note that correctness errors in the storage system un-
derlying Datomic could cause violations of Datomic’s
guarantees; Datomic atop DynamoDB is only as safe
as DynamoDB’s compare-and-set operation.

4.1 Inter-Transaction Semantics

If one considers a session as being bound to a single
peer, Datomic appears to guarantee Strong Session
Serializability. Histories of transactions appear indis-
tinguishable from one in which those transactions had
executed in some total order, and that order is consis-
tent with the order observed on each peer.

Histories restricted to write transactions (i.e. calls to
d/transact) appear Strict Serializable. So too do his-
tories where readers use d/sync to obtain an up-to-
date state of the database rather than d/db, which
could be stale.
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4.2 Intra-Transaction Semantics

Most transactional systems provide serial semantics
within a single transaction.” Each operation—writes,
reads, procedure calls, etc.—within a transaction ap-
pears to take place after the previous operation in
that same transaction. This property is explicitly en-
coded in the major formalisms for transactional isola-
tion. Adya, Liskov, and O’Neil begin their database
model by defining transactions as ordered, and explic-
itly specify later operations observe earlier ones:

Each transaction reads and writes objects
and indicates a total order in which these
operations occur....

If an event w,(z, ,,) is followed by r;(z;)
without an intervening event w,(x; ,,) in E,
z; must be z;,,. This condition ensures
that if a transaction modifies object x and
later reads x, it will observe its last update
to x.

Similarly, the abstract execution formalism of Cerone,
Bernardi, and Gotsman defines an internal consis-
tency axiom preserved by all consistency models from
Read Atomic through Serializable:

The internal consistency axiom INT ensures
that, within a transaction, the database
provides sequential semantics: a read from
an object returns the same value as the
last write to or read from this object in the
transaction. In particular, INT guarantees
that, if a transaction writes to an object and
then reads the object, then it will observe
its last write.

Crooks, Alvisi, Pu, and Clement’s client-centric for-
malism similarly specifies transactions include a to-
tal order, and uses that order to ensure reads observe
the most recent write to that object within the current
transaction:

Further, once an operation in 7" writes v to
k, we require all subsequent operations in
T that read k to return v.

Even as far back as 1979, Kung and Papadimitriou de-
fined transactions as a finite sequence of transaction
steps. “Thus, our transactions are straight-line pro-
grams,” they explain.

In all of these models, a Serializable system be-
haves equivalently to one which begins with an ini-
tial database state db, picks some transaction 7', ap-
plies the first operation in 7" producing an intermedi-
ate database state db(, applies the second operation
in T to db}, producing dbj, and so on until the transac-
tion has completed, producing a committed database
state db;. Then it moves to a second transaction, and
the process continues.

Datomic’s semantics are quite different. As previously
discussed, the operations within a transaction (asser-
tions, retractions, transaction functions, etc.) are eval-
uated logically concurrent with one another. Every
transaction function in a transaction 7" observes the
state of the database when 7" began, and produces a
new set of operations. They do not observe the other
assertions, retractions, or functions in 7. These op-
erations are recursively evaluated until only asser-
tions and retractions remain. Those assertions and
retractions are merged with set union, checked for con-
flicts (e.g. contradictory assertions about the value of a
single-cardinality attribute on some entity), and then
applied to the database state to produce a new, com-
mitted version of the database.

90f course, typical Serializable databases may not actually execute operations in serial order. However, they (ought to) behave
indistinguishably from a system which had. Similarly, Datomic may not execute transaction functions in parallel—but it guaran-
tees concurrent semantics. For concision, we say “serial semantics” instead of “behavior which is indistinguishable from a serial

execution,” and so on.
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This behavior may be surprising to users familiar with
other databases, but it is (to some extent) documented.
The lookup ref documentation explains that refs use
the before-transaction database state. The database
functions documentation says the transaction proces-
sor calls transactions “in turn”, which hints at or-
dered execution, but explicitly notes that functions are
passed “the value of the db (currently, as of the be-
ginning of the transaction).” On the other hand, that
same documentation goes on to say that “[tJransaction
functions are serialized by design,” which is true be-
tween transactions, but not within them.

Datomic’s concurrent semantics yield advantages and
drawbacks. For one, a common axiom of database sys-
tems is that committed database state is always con-
sistent, in the business-rules sense. Read Committed

and above proscribe phenomenon Glb (intermediate
read) in which one transaction sees intermediate state
from another transaction. Datomic goes one step fur-
ther: it is impossible to observe your own transaction’s
intermediate state. One can never'® produce or ob-
serve an inconsistent view of the system—full stop! In
some sense, the concept of intermediate state is inher-
ently confusing; Datomic does away with it altogether.
This choice also simplifies Datomic’s model of time: ev-
erything in a transaction happens “at once”, and ev-
ery datom is always associated with a single, totally-
ordered time.

On the other hand, Datomic’s model reintroduces one
of the problems Serializability has long been used to
prevent. As Papadimitriou’s 1979 paper The Serial-
izability of Concurrent Database Updates!! concisely

10Unless one produces new, transient database states using d/with.
Hntriguingly, Papadimitriou’s paper begins with transactions which perform a set of reads, then a set of writes; this formalism
might be more readily applicable to Datomic transactions. Later in the paper he addresses “multistep transactions,” which are

analogous to the serial formalisms discussed in this section.
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argues:

Another way of viewing serializability is as
a tool for ensuring system correctness. If
each user transaction is correct—i.e., when
run by itself, it is guaranteed to map con-
sistent states of the database to consistent
states—and transactions are guaranteed
to be intermingled in a serializable way,
then the overall system is also correct.

It seems plausible that users would want to write
transaction functions that transform data while pre-
serving some kind of correctness invariant. Datomic’s
transaction functions documentation originally sug-
gested as much:

Transaction functions run on the transac-
tor inside of transactions, and thus can
atomically analyze and transform database
values. You can use them to ensure atomic
read-modify-update processing, and in-
tegrity constraints... A transaction func-
tion can issue queries on the db value it is
passed, and can perform arbitrary logic in
the programming language.

If one writes a set of transaction functions which inde-
pendently preserve some invariant—say, that a grant
must never be both approved and also denied, or that
the circuits in a home never exceed the capacity of the
main panel—one would like to say (analogous to Se-
rializable transactions) that any composition of these
functions also preserves that invariant. But as we’ve
demonstrated, within a single Datomic transaction
this is not true! A transaction which calls multiple
transaction functions might produce an outcome in-
compatible with the atomic application of those func-
tions. It might violate integrity constraints. Paradoxi-
cally, combining two transactions into one can actually
make the system less safe.

It seems likely that Datomic’s behavior violates the
major modern transaction formalisms: Cerone et al’s
internal consistency axiom, Adya’s program order,
Crooks et al’s in-transaction order, etc. It may be
possible to contort Datomic’s model into alignment
with these formalisms: say, by defining Datomic as
containing only one object (the entire database), or
through a non-local translation of Datomic operations
to the formalism’s sequence of reads and writes, in
which reads are reordered to the beginning of the
transaction, and writes to the end. However, these
approaches strain intuition. Datomic databases obvi-
ously contain independently addressable entities and
attributes. Datomic transactions are clearly made up
of individual parts, those parts are written in order,
and this looks very much like how other databases
would express a transaction with serial semantics.
Convincing users to ignore that intuition seems a chal-
lenging lift.

An easier path might be to abandon these formalisms
altogether: they are clearly not designed to apply to
Datomic’s concurrent intra-transaction semantics. In-
stead, we could follow the classic informal definition

of Serializability. The internal structure of transac-
tions is completely opaque; all that matters is that the
history of transactions is equivalent to one which ex-
ecuted in a serial order. Under this interpretation,
Datomic does ensure Serializability, Strong Session
Serializability, and so on—just with different intra-
transaction rules. To avoid confusion, we carefully dis-
tinguish between inter- and intra-transaction consis-
tency throughout this report.

4.3 Recommendations

We found no evidence of safety bugs in Datomic, or se-
rious divergence between documentation and system
behavior. Datomic’s concurrency architecture is re-
freshingly straightforward, and its transactional cor-
rectness easy to argue. Jepsen believes users can rely
on Datomic’s inter-transaction Serializability.

However, Datomic users should be aware of the concur-
rent execution semantics within transactions. These
are specified in the documentation, but remain an un-
usual choice which creates the potential for subtle in-
variant violations. Users should be careful when call-
ing multiple transaction functions in the same trans-
action. In particular, watch out for intersecting read
sets and disjoint write sets. Also be aware of the possi-
bility that multiple updates (e.g. increments) to a sin-
gle value might quietly collapse to a single update.

In practice, we believe several factors protect Datomic
users against encountering anomalies. First, users of-
ten try to create a schema and use it in the same trans-
action, or try to use a lookup ref to refer to an entity
created in the same transaction. Both of these scenar-
ios fail, which guides users towards re-reading the doc-
umentation and internalizing Datomic’s model. Sec-
ond, the in-transaction conflict checker likely prevents
many of the anomalies that could arise from logically-
concurrent transaction functions: if two transac-
tion functions produce different values for a single-
cardinality attribute of an entity, the transaction
aborts.

In addition, users can use attribute predicates to con-
strain individual values, and entity specs (which must
be requested on each transaction) to constrain all at-
tributes of a single entity, or even an entire database.
However, users must take care to explicitly request the
appropriate entity specs within every transaction that
might require them.

Another potential surprise: Datomic goes to great
pains to ensure every database state is business-rules
consistent: there are no intermediate states, every
state is the product of a committed transaction, and
so on. However, not all schema constraints apply to
extant data. In particular, attribute predicates are
only enforced on newly-added datoms, not on existing
datoms.

A small operational note: Datomic transactors kill
themselves after a few minutes of not being able to talk
to storage. We recommended Datomic add a retry loop
to make transactors robust to network fluctuations.
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4.4 Documentation Changes

Following our collaboration, Datomic has made exten-
sive revisions to their documentation.

First, we worked together to rewrite Datomic’s trans-
action safety documentation. It now reflects the
stronger safety properties we believe Datomic actu-
ally offers: Serializability globally, monotonicity on
each peer, and Strict Serializability when restricted
to writes, or reads which use sync. Datomic also re-
moved the “single-writer” argument from their safety
documentation.

Datomic’s docs now include a comprehensive explana-
tion of transaction syntax and semantics. It covers the
structure of transaction requests, the rules for expand-
ing map forms and transaction functions, and the pro-
cess of applying a transaction. Expanded documenta-
tion for transaction functions explains Datomic’s vari-
ous mechanisms for ensuring consistency, how to cre-
ate and invoke functions, and the behavior of built-
in functions. The transaction function documentation
no longer says they can be used to “atomically ana-
lyze and transform database values”, nor does it claim
transaction functions can “ensure atomic read-modify-
write processing”.

Datomic used to refer to the data structure passed
to d/transact as a “transaction”, and to its ele-
ments as “statements” or “operations”. Going for-
ward, Datomic intends to refer to this structure as a
“transaction request”, and to its elements as “data”.
The [:db/add ...] and [:db/retract ...] forms
are “assertion requests” and “retraction requests,” re-
spectively. This helps distinguish between asser-
tion datoms, which are [entity, attribute, value,
transaction, added-or-removed?] tuples, and the
incomplete [entity, attribute, value] assertion re-
quest in a transaction request.

Datomic has also added documentation arguing for
a difference between Datomic transactions and SQL-
style “updating transactions.” There is also a new tech
note which discusses the differences between transac-
tion functions and entity predicates when composing
transactions.

4.5 Future Work

Our tests did not evaluate excision or historical
queries. Nor did we investigate the Datomic client
library—though we believe its behavior is likely sim-
ilar to the peers we designed in this test. We also lim-
ited ourselves to a single storage engine: DynamoDB.
Datomic runs atop a variety of storage systems; test-
ing others might be of interest. Finally, we have not
evaluated Datomic Cloud, which uses a slightly differ-
ent architecture.

Jepsen is aware of few systems or formalisms which
provide inter-transaction Serializability but intra-
transaction concurrent semantics. Datomic’s behavior
suggests fascinating research questions.

First, what are Datomic transactions? Is there a sense
in which they are a dual to typical database transac-
tions? Rather than happening entirely in series, ev-
erything happens all at once. What are the advan-
tages and drawbacks of such a “co-transaction” model?
Can the drawbacks be mitigated through static analy-
sis, runtime checks, or API extensions? And does this
actually matter in practice, or are users unlikely to
write transactions which could violate invariants?

Second, are there other databases with concur-
rent intra-transaction semantics? Conversely, what
about other temporal databases with serial intra-
transaction semantics? How does Datomic’s model fit
into this landscape?

Alvaro’s Dedalus, a research project exploring tem-
poral Datalog, comes to mind. Like Datomic, its
transactions happen “all at once.” As in Datomic,
this creates the apparent paradox that breaking up
operations into multiple transactions can actually
make them safer. Consider also Fauna, a temporal
database supporting up to Strong Serializability. Like
Datomic, Fauna transactions are small programs that
the database evaluates, rather than an interactive
session driven by a client. Unlike Datomic, Fauna’s
transactions provide (what appears to be) serial execu-
tion with incremental side effects within each transac-
tion. Are Fauna’s in-transaction temporal semantics
sound? How do their models compare?

The similarity between Datomic’s end-of-transaction
conflict checker and Snapshot Isolation’s first-
committer-wins rule suggests new research opportuni-
ties. How close is the relationship between Snapshot
Isolation and Datomic’s in-transaction semantics, and
what parts of the existing literature on Snapshot Iso-
lation could we apply to Datomic? Can we show that
within a Datomic transaction, cycles between transac-
tion functions must always involve a pair of adjacent
read-write anti-dependency edges. Clearly Datomic
does not prevent the intra-transaction analogue of
lost update, since it collapses multiple increments.
What about Fractured Read? Does it allow something
like the read-only transaction anomaly described by
Fekete, O’Neil, and O’Neil? Or Long Fork? Are there
analogues to other G2-item and G2 cycles, perhaps
involving predicates?

Finally, one wonders whether there might be a connec-
tion to Hellerstein & Alvaro’s CALM theorem. Could
we show, for instance, that transaction functions
which are logically monotonic are safe to combine in a
single Datomic transaction? Datalog programs with-
out negation are logically monotonic. Can we show
that those programs are also safe under this execution
model? Jepsen encourages future research.

Jepsen wishes to thank the entire Datomic team at
Nubank, and in particular Dan De Aguiar, Guilherme
Baptista, Adrian Cockcroft, Stuart Halloway, Keith
Harper, and Chris Redinger. Peter Alvaro offered key
insights into concurrent semantics. Irene Kannyo pro-
vided invaluable editorial support. This work was
funded by Nubank (Nu Pagamentos S.A), and con-
ducted in accordance with the Jepsen ethics policy.
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