
MySQL 8.0.34
Peter Alvaro & Kyle Kingsbury
2023-12-19

MySQL is a popular relational database. We revisit Kleppmann’s 2014 Hermitage and confirm that MySQL’s
Repeatable Read still allows G2-item, G-single, and lost update. Using our transaction consistency checker Elle,
we show that MySQL Repeatable Read also violates internal consistency. Furthermore, it violates Monotonic
Atomic View: transactions can observe some of another transaction’s effects, then later fail to observe other
effects of that same transaction. We demonstrate violations of ANSI SQL’s requirements for Repeatable Read.
We believe MySQL Repeatable Read is somewhat stronger than Read Committed. As a lagniappe, we show that
AWS RDS MySQL clusters routinely violate Serializability. This work was performed independently without
compensation, and conducted in accordance with the Jepsen ethics policy.

1 Background

MySQL needs little introduction. Over the last 28
years it has become one of the most widely deployed
SQL databases. MySQL is primarily used for online
transaction processing (OLTP) workloads, but is also
deployed as a part of OLAP and queuing systems.

MySQL was designed as a single-server database, but
has been extended with various multi-node replication
schemes, including several flavors of binlog replica-
tion, group replication, NDB cluster, and third-party
plugins like Galera Cluster & Percona XtraDB Clus-
ter. Previous Jepsen work discussed Percona XtraDB
Cluster and Galera Cluster. In this analysis we focus
on single-server MySQL, but we also evaluated clus-
ters with a single writeable primary and read-only sec-
ondaries using binlog replication.

MySQL also supports multiple storage engines which
have different safety properties. We focus on the de-
fault: InnoDB. Throughout this text, we use “MySQL”
to mean “MySQL using the InnoDB storage engine.”

1.1 ANSI SQL Isolation is Bad, Actually

In order to discuss the nuances of SQL isolation lev-
els, we must first explain some history. In 1977 Gray,
Lorie, Putzolu, and Traiger published Granularity of
Locks and Degrees of Consistency in a Shared Data
Base, which introduced four increasingly safe degrees
of transaction consistency. In 1973 IBM developed

System R, one of the first relational databases, and
shortly thereafter introduced SQL as a query lan-
guage for it. System R’s success spawned a slew of
relational databases using SQL, many with distinct
flavors of concurrency control. Starting in 1986 ANSI
released1 a series of standards codifying SQL behavior.
The third revision of the standard, SQL-92, defined
the semantics of concurrent transactions through four
transaction isolation levels, again with increasing de-
grees of safety. As with Gray et al., these isolation lev-
els were related to the behavior of increasingly conser-
vative locking regimes. However, to allow databases
which used non-locking concurrency control, ANSI
phrased their levels in terms of three possible phenom-
ena which should not occur. As the standard puts it,
“the following phenomena are possible:”2

P1 (“Dirty Read”) SQL-transaction T1 modifies a
row. SQL-transaction T2 then reads that row
before T1 performs a COMMIT. If T1 then per-
forms a ROLLBACK, T2 will have read a row
that was never committed and that may thus be
considered to have never existed.

P2 (“Non-Repeatable Read”) SQL-transaction T1
reads a row. SQL-transaction T2 then modifies
or deletes that row and performs a COMMIT. If
T1 then attempts to reread the row, it may re-
ceive the modified value or discover that the row
has been deleted.

P3 (“Phantom”) SQL-transaction T1 reads the set
of rows N that satisfy some <search condi-
tion>. SQL-transaction T2 then executes SQL-
statements that generate one or more rows that

1Ever sticklers for precision, ANSI reminds readers that while ANSI approves, copyrights, and publishes standards, “there are no
ANSI standards, only standards developed by ANSI-approved committees, many operating in accordance with the ANSI Essen-
tial Requirements (American National Standards).” In this work, “the ANSI SQL standard” refers to ANSI X3.135, also known
as ISO/IEC 9075. ANSI X3.135 (not an ANSI standard) was originally produced by the Accredited Standards Committee (ASC)’s
ANSI Database Technical Committee (ANSI X3H2). ISO 9075, a technically identical standard, was published a few months
later. Today ISO/IEC 9075 is developed by the ISO/IEC Joint Technical Committee (JTC) 1 for Information Technology, and
INCITS (an ANSI-accredited standards developing organization and the successor to ANSI X3), adopts it for use as an American
National Standard.

2The relevant portion of the SQL standard costs over two hundred dollars, making it inaccessible to casual readers. Precise phrasing
is critical for this work, so we reproduce its definitions verbatim.

1

https://www.mysql.com/
https://github.com/ept/hermitage/blob/master/mysql.md
https://github.com/jepsen-io/elle
https://jepsen.io/ethics
https://www.mysql.com/
https://www.percona.com/blog/overview-of-different-mysql-replication-solutions/
https://dev.mysql.com/doc/refman/8.0/en/binlog-replication-configuration-overview.html
https://dev.mysql.com/doc/refman/8.0/en/binlog-replication-configuration-overview.html
https://dev.mysql.com/blog-archive/mysql-group-replication-a-quick-start-guide/
https://dev.mysql.com/doc/refman/8.0/en/mysql-cluster.html
https://galeracluster.com/
https://www.percona.com/software/mysql-database/percona-xtradb-cluster
https://www.percona.com/software/mysql-database/percona-xtradb-cluster
https://aphyr.com/posts/328-call-me-maybe-percona-xtradb-cluster
https://aphyr.com/posts/328-call-me-maybe-percona-xtradb-cluster
https://aphyr.com/posts/327-jepsen-mariadb-galera-cluster
https://dev.mysql.com/doc/refman/8.0/en/replication-howto.html
https://dev.mysql.com/doc/refman/8.0/en/innodb-introduction.html
https://www.cs.cmu.edu/~natassa/courses/15-721/papers/GrayLocks.pdf
https://www.cs.cmu.edu/~natassa/courses/15-721/papers/GrayLocks.pdf
https://www.cs.cmu.edu/~natassa/courses/15-721/papers/GrayLocks.pdf
https://learnsql.com/blog/history-of-sql/
https://archive.org/details/federalinformati127nati
https://blog.ansi.org/sql-standard-iso-iec-9075-2023-ansi-x3-135/
https://learnsql.com/blog/history-of-sql-standards/
https://blog.ansi.org/sql-standard-iso-iec-9075-2023-ansi-x3-135/
https://www.youtube.com/watch?v=3xe7uS62fwY
https://webstore.ansi.org/standards/iso/isoiec90752023-2502169?source=blog


satisfy the <search condition> used by SQL-
transaction T1. If SQL-transaction T1 then re-
peats the initial read with the same <search con-
dition>, it obtains a different collection of rows.

ANSI SQL defines four isolation levels in terms of
these anomalies. It begins by stating that transac-
tions which execute at the Serializable isolation level

must be equivalent to some serial execution, i.e., one
in which that set of transactions executed one after
the other. Then it says “the isolation levels are differ-
ent with respect to phenomena P1, P2, and P3.” The
standard provides the following table which “specifies
the phenomena that are possible and not possible for
a given isolation level”:

Level P1 P2 P3
Read Uncommitted Possible Possible Possible
Read Committed Not Possible Possible Possible
Repeatable Read Not Possible Not Possible Possible
Serializable Not Possible Not Possible Not Possible

In 1995 Berenson, Bernstein, Gray,3 Melton, and the
O’Neils published A Critique of ANSI SQL Isolation
Levels, which laid out critical flaws in these defini-
tions. “The three ANSI phenomena are ambiguous.
Even their broadest interpretations do not exclude
anomalous behavior.”

For example, P1 says something bad might happen
if 𝑇1 were to abort, but doesn’t actually say whether
it aborts or not. Some people interpreted the stan-
dard to require 𝑇1 aborts. This would make it legal
under read committed for transactions to read as-yet-
uncommitted state from other transactions (so long as
they went on to commit). 𝑇1 could write 𝑥 = 1, 𝑇2
could write 𝑦 = 2, and 𝑇1 and 𝑇2 could both see each
other’s effects. This kind of circular information flow
seems bad, but whether the standard allows it is a mat-
ter of interpretation. Similar ambiguities exist for P2
and P3.

Even interpreted broadly, preventing P1, P2, and P3
does not ensure Serializability. The standard omits
a critical phenomenon P0 (“dirty write”), in which
transaction 𝑇1 writes some row, transaction 𝑇2 over-
writes 𝑇1’s write, and 𝑇1 commits. This is clearly
undesirable, but legal under ANSI Read Uncommit-
ted, Read Committed, and Repeatable Read. Further-
more, ANSI SQL P3 only prohibits inserts affecting a
predicate, but not updates or deletes.

In 1999, Atul Adya built on Berenson et al.’s cri-
tique and developed formal and implementation-
independent definitions of various transaction isola-
tion levels, including those in ANSI SQL.4 As he
notes:

The ANSI definitions are imprecise be-
cause they allow at least two interpreta-
tions; furthermore, the anomaly interpre-
tation is definitely incorrect. The preven-
tative interpretation [meaning Berenson
et al.’s interpretation which added P0, ex-
panded P3, and so on] is correct in the
sense that it rules out undesirable (i.e.,
non-serializable) histories. However, this
interpretation is overly restrictive since it
also rules out correct behavior that does

not lead to inconsistencies and can occur
in a real system. Thus, any system that
allows such histories is disallowed by this
interpretation, e.g., databases based on op-
timistic mechanisms.

Adya first defines a dependency graph between trans-
actions. There are three main types of dependencies,
which we summarize informally:

Write-Write Transaction 𝑇1 writes some version 𝑥1 of
object 𝑥, which transaction 𝑇2 overwrites by in-
stalling the next version of 𝑥: 𝑥2.

Write-Read Transaction 𝑇1 writes version 𝑥1, which
transaction 𝑇2 reads.

Read-Write Transaction 𝑇1 reads version 𝑥1, which
transaction 𝑇2 overwrites by installing the next
version of 𝑥: 𝑥2.

Adya then defines portable isolation levels PL-1, PL-
2, PL-2.99, and PL-3, which capture what the ANSI
SQL standard (arguably) intended. Each level rules
out progressively broader kinds of cycles in the trans-
action dependency graph:

PL-1 (“Read Uncommitted”) Prohibits G0 (“write cy-
cle”): a cycle of write-write dependencies. This
is analogous to Berenson’s P0 (“dirty write”).

PL-2 (“Read Committed”) Prohibits G0 and G1. G1
consists of three anomalies: G1a (“aborted
read”), G1b (“intermediate read”)5, and G1c
(“cyclic information flow”): a cycle of write-write
or write-read dependencies. This captures the
essence of the preventative interpretation of P1.

PL-2.99 (“Repeatable Read”) Prohibits G0, G1, and
G2-item: a cycle involving write-write, write-
read, or read-write edges without predicates.
This captures the essence of ANSI SQL Repeat-
able Read, which is distinguished from Serializ-
able only by predicate safety.

PL-3 (“Serializable”) Prohibits G0, G1, and G2: a
cycle involving write-write, write-read, or read-
write edges (with or without predicates). This
guarantees equivalence to a serial execution.

Adya’s dependency graph-based isolation levels re-
solved the ambiguities of the ANSI definitions, and

3Yes, that Jim Gray, of System R fame!
4Readers looking for a shorter version should try Adya’s ICDE paper with Barbara Liskov and Patrick O’Neil.
5We omit a detailed explanation of the non-cyclic anomalies, as well as a discussion of aborted and committed transactions, internal

and external reads/writes, version orders, etc., for brevity.

2

https://www.microsoft.com/en-us/research/wp-content/uploads/2016/02/tr-95-51.pdf
https://www.microsoft.com/en-us/research/wp-content/uploads/2016/02/tr-95-51.pdf
https://pmg.csail.mit.edu/papers/adya-phd.pdf
https://pmg.csail.mit.edu/papers/adya-phd.pdf
https://pmg.csail.mit.edu/papers/icde00.pdf


remains the most widely-used formalism for charac-
terizing transaction histories and anomalies. Jepsen
generally uses Adya’s formalism.

Although the database community has known for
decades that ANSI SQL’s isolation level definitions
are broken, the standard’s language remained un-
changed. The same ambiguous, incomplete defini-
tions are still present in the 2023 revision of the stan-
dard.

1.2 Repeatable Read

ANSI SQL’s isolation levels are bad, but some levels
have caused more problems than others. The fact
that different database vendors provide isolation lev-
els with the same names is useful only if the seman-
tics of a particular level are consistent across vendors.
And for three of the isolation levels, this is usually true.
Most databases we’ve evaluated do ensure at least
PL-1 for read uncommitted, PL-2 for Read Commit-
ted, and PL-3 for Serializable.6 However, there is less
agreement on the semantics of Repeatable Read.

Adya’s PL-2.99 definition of Repeatable Read is quite
strict, ruling out all dependency cycles except those
involving predicate edges. The ANSI definition, while
ambiguous, appears similarly strict: it prohibits all
listed anomalies except “phantoms,” which depend
on predicate reads. This is not surprising when we
consider the roots of the isolation levels in locking
regimes: the original Repeatable Read was the isola-
tion level you got when you followed strict two-phase
locking (holding read and write locks until the end
of the transaction) but did not enforce predicate lock-
ing.

For some reason DB vendors have chosen different def-
initions of Repeatable Read than Adya and the ANSI
standard, and almost no vendors provide the same
guarantees at Repeatable Read. In fact, Microsoft
SQL Server is the only database that we have tested
for which Repeatable Read appears to correspond to
PL-2.99 and the ANSI definition. In Postgres, Repeat-
able Read means Snapshot Isolation, a level that is
neither stronger nor weaker than PL-2.99.7

With this diversity of implementations in mind, we
turn to the question at hand: what does MySQL do?

1.3 MySQL Isolation

The transaction isolation levels documentation for
MySQL indicates that MySQL with InnoDB “offers
all four transaction isolation levels described by the

SQL:1992 standard”: Read Uncommitted, Read Com-
mitted, Repeatable Read, and Serializable. The doc-
umentation goes on to explain how MySQL achieves
these isolation levels.

At MySQL Read Uncommitted, transactions should
behave “like Read Committed,” except for allowing
dirty read: an anomaly where a read observes “data
that was updated by another transaction but not yet
committed.”

At MySQL Read Committed, every individual con-
sistent read reads from a fresh snapshot of commit-
ted state. A “consistent read” is the default behav-
ior for reads (e.g. SELECT * FROM problems) and is
the focus of this report. There are also stronger
reads (e.g. SELECT ... FOR UPDATE) which explicitly
request locks, and weaker reads (e.g. SELECT ... SKIP
LOCKED) which skip some of the default locks.

MySQL Repeatable Read, the default isolation level,
ensures safety through a snapshot mechanism:

Consistent reads within the same transac-
tion read the snapshot established by the
first read. This means that if you issue sev-
eral plain (nonlocking) SELECT statements
within the same transaction, these SELECT
statements are consistent also with respect
to each other.

MySQL’s consistent read documentation further em-
phasizes that reads should operate on a snapshot of
the database taken by the first read in a transaction.

If the transaction isolation level is
REPEATABLE READ (the default level), all con-
sistent reads within the same transaction
read the snapshot established by the first
such read in that transaction….

Suppose that you are running in the
default REPEATABLE READ isolation level.
When you issue a consistent read (that
is, an ordinary SELECT statement), InnoDB
gives your transaction a timepoint accord-
ing to which your query sees the database.
If another transaction deletes a row and
commits after your timepoint was assigned,
you do not see the row as having been
deleted. Inserts and updates are treated
similarly.

The documentation for Serializable isolation says Se-
rializable is “like REPEATABLE READ, but InnoDB implic-
itly converts all plain SELECT statements to SELECT
... FOR SHARE if autocommit is disabled.”

6Vendors rarely come out and say they intend to provide the Adya levels, but in practice their implementations either prevent (e.g.)
G0 at Read Committed, or, when informed of the behavior, correct it. There are exceptions. For instance, RedPanda considers
G0 legal at “Read Committed,” and Oracle’s “Serializable” is actually Snapshot Isolation. Many databases provide higher iso-
lation than is required under Adya’s formalism. For instance, PostgreSQL appears to provide Monotonic Atomic View at read
committed.

7Because write skew can occur in Snapshot Isolation but not PL-2.99, and phantoms can occur in PL-2.99 but some are prevented
by Snapshot Isolation, neither is strictly stronger than the other. For more details, see Berenson et al., which explains that while
A3 (the strict interpretation of phantoms) is prohibited by Snapshot Isolation, it sometimes permits P3 (the broad interpretation).

3

https://webstore.ansi.org/standards/iso/isoiec90752023-2502169
https://webstore.ansi.org/standards/iso/isoiec90752023-2502169
https://jepsen.io/analyses/postgresql-12.3
https://jepsen.io/analyses/postgresql-12.3
https://dev.mysql.com/doc/refman/8.0/en/innodb-transaction-isolation-levels.html
https://dev.mysql.com/doc/refman/8.0/en/innodb-transaction-isolation-levels.html#isolevel_read-uncommitted
https://dev.mysql.com/doc/refman/8.0/en/innodb-transaction-isolation-levels.html#isolevel_read-committed
https://dev.mysql.com/doc/refman/8.0/en/innodb-transaction-isolation-levels.html#isolevel_read-committed
https://dev.mysql.com/doc/refman/8.0/en/innodb-transaction-isolation-levels.html#isolevel_repeatable-read
https://dev.mysql.com/doc/refman/8.0/en/innodb-transaction-isolation-levels.html#isolevel_serializable
https://dev.mysql.com/doc/refman/8.0/en/innodb-transaction-isolation-levels.html#isolevel_read-uncommitted
https://dev.mysql.com/doc/refman/8.0/en/glossary.html#glos_dirty_read
https://dev.mysql.com/doc/refman/8.0/en/innodb-transaction-isolation-levels.html#isolevel_read-committed
https://dev.mysql.com/doc/refman/8.0/en/innodb-consistent-read.html
https://dev.mysql.com/doc/refman/8.0/en/innodb-consistent-read.html
https://dev.mysql.com/doc/refman/8.0/en/innodb-locking-reads.html
https://dev.mysql.com/doc/refman/8.0/en/innodb-transaction-isolation-levels.html#isolevel_repeatable-read
https://dev.mysql.com/doc/refman/8.0/en/innodb-consistent-read.html
https://dev.mysql.com/doc/refman/8.0/en/innodb-transaction-isolation-levels.html#isolevel_serializable
https://jepsen.io/analyses/redpanda-21.10.1
https://jepsen.io/analyses/redpanda-21.10.1
https://github.com/ept/hermitage/blob/master/oracle.md
https://www.microsoft.com/en-us/research/wp-content/uploads/2016/02/tr-95-51.pdf


There ends the isolation level documentation. How-
ever, if one digs deeper into the consistent read docu-
mentation, there is a curious note on the semantics of
Repeatable Read:

The snapshot of the database state applies
to SELECT statements within a transaction,
not necessarily to DML statements. If you
insert or modify some rows and then com-
mit that transaction, a DELETE or UPDATE
statement issued from another concurrent
REPEATABLE READ transaction could affect
those just-committed rows, even though
the session could not query them. If a
transaction does update or delete rows com-
mitted by a different transaction, those
changes do become visible to the current
transaction.

This is confusing: the ANSI SQL standard and
MySQL’s own reference manual both consider SELECT
to be a DML statement, but this note seems to think
they’re different. It appears that writes made by a
Repeatable Read transaction can affect rows that the
transaction could not read. But what does it mean
for a different transaction’s updates to become visible
to the current transaction? How does that align with
MySQL’s claim that multiple reads in a Repeatable
Read transaction “read the snapshot established by
the first read”? What happened to the timepoint as-
signed by the first read?

This calls for a test.

2 Test Design

We designed a small test suite for MySQL using the
Jepsen testing library at version 0.3.4. We used the
mysql-connector-j JDBC adapter as our client. We
tested MySQL 8.0.34, and MariaDB 10.11.3 on Debian
Bookworm. Our tests ran against a single MySQL
node as well as binlog-replicated clusters with one or
two read-only followers, without failover. We also ran
our test suite against a hosted MySQL service: AWS’s
RDS Cluster, using the “Multi-AZ DB Cluster” pro-
file. This is the recommended default for production
workloads, and offers a binlog-replicated deployment
of MySQL 8.0.34 where secondary nodes support read
queries.

Our tests included basic fault injection for process
pauses, crashes, and network partitions, as well as the
loss of un-fsynced writes to disk. However, almost ev-
ery finding we discuss in this work occurred in healthy,
single-node MySQL instances.

2.1 List Append

Our main workload used Elle’s list-append checker
for transactional isolation. In a nutshell, Elle infers
Adya’s write-write, write-read, and read-write depen-
dencies between transactions, then looks for cycles in
the resulting dependency graph. Each cycle it finds
demonstrates that a particular set of isolation levels
do not hold.

At a high level the append workload performs ran-
domly generated transactions comprising reads and
appends of unique integer elements to a collection
of lists identified by primary key. As in our previ-
ous tests of SQL databases, we encoded these lists
as a text field of comma-separated values, one per
row, and used SQL CONCAT to append elements.8 We
split these rows across multiple tables with a struc-
ture like

create table "txn0" (
id int not null primary key,
val text

);

Over the last few years we’ve made several improve-
ments to Elle which allow it to detect more anoma-
lies.9 When some appended elements are never read
in a list-append test, Elle now infers ww and rw de-
pendencies, placing them after the last value seen
in the longest successful read. We now detect P4
(lost update) anomalies explicitly, even when version
orders are uninferable. Elle also searches for cy-
cles involving multiple nonadjacent read-write anti-
dependencies which also include real-time and process
edges. This lets us detect more subtle violations of
both strong and strong session Snapshot Isolation.

2.2 Non-Repeatable Read

When Elle identified internal consistency violations at
Repeatable Read, we designed a workload specifically
to stress MySQL’s Repeatable Read semantics, which
works as follows. We create a simple table of people
identified by primary key, and populate it with a sin-
gle row:

create table people (
id int not null,
name text not null,
gender text not null,
primary key (id))

);
insert into people (id, name, gender)

values (0, "moss", "enby");

We then perform a series of write transactions which
update only the row’s name. Concurrently, a second

8There has been some confusion about whether Elle’s list-append workload requires a custom datatype not supported by SQL
databases. We are happy to share that the SQL standard has included both string and array concatenation since 1999, and that
these datatypes and operators are broadly supported by vendors. Elle also includes a workload for plain read-write registers.

9Some authors have claimed some or all of Elle’s checkers are unsound. To the best of our knowledge Elle is sound: every anomaly
it finds is “real.” As our paper discussed, Elle is not complete: it may fail to detect some anomalies. This work makes Elle more
complete.

4

https://dev.mysql.com/doc/refman/8.0/en/innodb-consistent-read.html
https://dev.mysql.com/doc/refman/8.0/en/innodb-consistent-read.html
https://dev.mysql.com/doc/refman/8.0/en/sql-data-manipulation-statements.html
https://github.com/jepsen-io/mysql
https://github.com/jepsen-io/jepsen
https://mariadb.org/
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/multi-az-db-clusters-concepts.html
https://github.com/jepsen-io/elle
https://github.com/jepsen-io/mysql/blob/4c239cb5c66a7f1a55fa02ce4c9f43b7a70e9d0b/src/jepsen/mysql/append.clj
https://jepsen.io/analyses/postgresql-12.3
https://jepsen.io/analyses/postgresql-12.3
https://github.com/jepsen-io/elle/commit/bccbc1ed6bc175453b40d514bdf873e554494633
https://github.com/jepsen-io/elle/commit/bccbc1ed6bc175453b40d514bdf873e554494633
https://github.com/jepsen-io/elle/commit/9da9f48d4bf1ab998533d9d6f5c0de4b732365ce
https://github.com/jepsen-io/elle/commit/9da9f48d4bf1ab998533d9d6f5c0de4b732365ce
https://github.com/jepsen-io/elle/commit/3abdb6a56b6c816199796d8c635125f7ecd197cd
https://github.com/jepsen-io/elle/commit/3abdb6a56b6c816199796d8c635125f7ecd197cd
https://github.com/jepsen-io/elle/commit/3abdb6a56b6c816199796d8c635125f7ecd197cd
https://github.com/jepsen-io/elle/commit/3abdb6a56b6c816199796d8c635125f7ecd197cd
https://github.com/jepsen-io/mysql/blob/4c239cb5c66a7f1a55fa02ce4c9f43b7a70e9d0b/src/jepsen/mysql/nonrepeatable_read.clj
https://github.com/jepsen-io/mysql/blob/4c239cb5c66a7f1a55fa02ce4c9f43b7a70e9d0b/src/jepsen/mysql/nonrepeatable_read.clj
https://arxiv.org/abs/2301.07313
http://mpaxos.com/pub/viper-eurosys23.pdf
https://arxiv.org/abs/2301.07313


series of transactions each read the row’s name, up-
date its gender field, and read the name again. Viola-
tions of Repeatable Read manifest as the row’s name
changing between the two reads. We also perform dele-
tions and re-insertions of row 0, in case they behave
differently than plain updates.

2.3 Monotonic Atomic View

We also designed a second targeted workload to illus-
trate violations of Monotonic Atomic View. This work-
load creates a single table with two rows:

create table mav (
id int not null,
`value` int not null,
noop int not null,
primary key (id)

);
insert into mav (id, `value`, noop)

values (0, 0, 0);
insert into mav (id, `value`, noop)

values (1, 0, 0);

We perform a mix of write and read transactions. Each
write increments the value of row 0, then increments
row 1. Reads select the value of row 0, set the noop
field of row 1 to a random value, then read the val-
ues of 1 and 0. Under Monotonic Atomic View, these
reads should be monotonically increasing. For exam-
ple, once a reader observes value 2, it should there-
after see every row’s value as 2 or higher.

2.4 LazyFS

In 2022 Jepsen commissioned the University of Porto’s
INESC TEC to develop LazyFS: a FUSE filesystem
for simulating the loss of un-fsynced writes. LazyFS
maintains an in-memory page cache of data which has
been written but not fsynced, flushing it to underlying
storage only as the cache fills or fsync calls are made.
A test harness can ask LazyFS to discard its cache
at any time, simulating what might happen during a
power failure. João Pedro Rodrigues Azevedo’s disser-
tation discusses this work in detail, including several
database bugs.

LazyFS has been integrated with Jepsen for a little
over a year, but this is the first public Jepsen report
including it. We tested MySQL by killing the MySQL
process, asking LazyFS to drop uncommitted writes,
then restarting the process.

3 Results

3.1 G2-item at Repeatable Read

Adya’s Repeatable Read (PL-2.99) prohibits G2-item:
a cycle of write-write, write-read, and read-write de-
pendency edges, where those edges do not involve
predicates. However, MySQL’s Repeatable Read rou-
tinely allows G2-item, even on a single healthy node.
Kleppmann reported this behavior in 2014 and it still
occurs today. Take for example this list-append test,
which exhibited 214 cycles in just 40 seconds. Here is
one of those cycles comprising two transactions, nei-
ther of which saw each other’s effects.

r 141 [1 2] a 140 1

a 141 3 r 141 [1 2 3] r 140 nil

:rw :rw

In this diagram the top transaction read key 141 and
saw the value [1 2], then appended 1 to key 140. The
bottom transaction appended 3 to key 141, read key
141 and observed the value [1 2 3], then read key 140
and found it did not exist. The top transaction must
have executed before the bottom transaction, since it
failed to observe the bottom transaction’s append of 3.
But the bottom transaction must have executed before
the top transaction, since it read key 140 before any ap-
pend! This cycle involves purely reads and updates by
primary key, and is therefore G2-item.10

Transactions which fail to see each other’s effects
could violate important invariants. Consider two in-
dependent electricians, each adding a new 20 amp cir-
cuit to a breaker panel. Each might visit the site to
check11 that the total load on each circuit (including
the one they intend to add) would not exceed the 100
amp capacity of the panel, then return a few days later
to add the circuit. Under MySQL’s Repeatable Read,
both could see a load of 70 amps, add a 20 amp cir-
cuit, and create a total load of 110 amps—exceeding
the safe load of the panel.12

While this behavior is prohibited by PL-2.99 Repeat-
able Read, it could be interpreted as legal under ANSI
SQL Repeatable Read. The standard’s definition of P2
(non-Repeatable Read) only discusses a transaction
which reads the same row twice and observes some
other transaction’s effects. Since these transactions
never read a row twice, they do not exhibit P2! This is
one of many ways in which the standard fails to cap-
ture anomalous behavior.

10Write skew (A5B) as presented by Berenson et al requires both transactions read before writing. This particular anomaly is write-
skew-esque: the two transactions have overlapping read sets and disjoint write sets causing each to fail to observe the other’s
effects. However, one transaction happened to read after writing, rather than before.

11Breaker panels have a fixed number of slots, some of which may be left free. Adding a circuit involves installing a circuit breaker
in a free slot. In this model of G2-item, the electricians check each slot on the breaker panel by performing a series of primary-key
reads. If they used a predicate read, this would be G2.

12This scenario happened to one of your authors. Thankfully the panel limit was not exceeded.

5

https://github.com/jepsen-io/mysql/blob/4c239cb5c66a7f1a55fa02ce4c9f43b7a70e9d0b/src/jepsen/mysql/mav.clj
https://jepsen.io/consistency/models/monotonic-atomic-view
https://www.inesctec.pt/en
https://github.com/dsrhaslab/lazyfs
https://repositorium.sdum.uminho.pt/bitstream/1822/84475/1/Joao%20Pedro%20Rodrigues%20Azevedo.pdf
https://repositorium.sdum.uminho.pt/bitstream/1822/84475/1/Joao%20Pedro%20Rodrigues%20Azevedo.pdf
https://github.com/dsrhaslab/lazyfs
https://github.com/jepsen-io/jepsen/blob/f69fe9929af8528d289b9ba4f72bdc18bad35157/jepsen/src/jepsen/lazyfs.clj
https://github.com/jepsen-io/mysql/blob/4c239cb5c66a7f1a55fa02ce4c9f43b7a70e9d0b/src/jepsen/mysql/db/mysql.clj#L200-L203
https://github.com/ept/hermitage/blob/master/mysql.md#write-skew-g2-item
https://s3.amazonaws.com/jepsen.io/analyses/mysql-8.0.34/rr-g2-item-20230929T000636.621.zip
https://arxiv.org/pdf/cs/0701157.pdf


3.2 G-single at Repeatable Read

The example of G2-item we presented above involved
a pair of transactions linked by adjacent read-write
edges: in short, neither observed the other’s effects.
However, MySQL Repeatable Read also exhibits G-
single (a.k.a. read skew): cycles composed of write-
write, write-read, and read-write edges, but where
read-write edges are never adjacent to one another.
Kleppmann reported this behavior in 2014, and we
can confirm it still occurs in MySQL 8.0.34. Like G2-
item, G-single cycles involving only item dependencies
are prohibited under PL-2.99 Repeatable Read.

Take, for example, this sixty-second append test of a
single MySQL node without any faults. At roughly 140
transactions per second it exhibited 244 instances of G-
single (plus 305 more instances of G2-item). Since the
append test uses no predicate operations, all of these
are violations of Repeatable Read. Here is one of those
cycles:

a 363 9 a 377 5

r 377 nil a 363 10

:ww :rw

The top transaction here appended 9 to key 363, then
5 to key 377. The bottom transaction failed to observe
the append to 377, but also managed to append 10 to
key 363 after the top transaction. We know this be-
cause a later read observed key 363’s value as [5 6 4
7 8 9 10]. This violates both Repeatable Read (which
rules out any cycle of item edges) and Snapshot Isola-
tion (which rules out G-single in general).

In short: one transaction can both fail to observe but
also overwrite another. More complex cycles involving
write-read edges also occur. In this case the depen-
dency edges involved different keys, which suggests an
interesting question: what would happen if two trans-
actions conflicted on a single key?

3.3 Lost Update at Repeatable Read

Phenomenon P4 (lost update) is a special case of G-
single in which exactly two transactions are linked by
a write-write and read-write cycle on a single key. In
other words: two transactions read the same version of
some key, and both go on to update it. This is expressly
prohibited by Snapshot Isolation and PL-2.99 Repeat-
able Read. However, Kleppmann showed in 2014 that
MySQL Repeatable Read allowed lost update, and we

can confirm that it still occurs routinely, even on a sin-
gle node without faults. Here is a second cycle from
the same test run:

r 636 nil a 636 10 r 638 nil

r 636 nil r 636 nil a 636 1 r 636 [1]

:rw :ww

Both of these transactions read key 636, found it miss-
ing, and went on to write what they thought would be
the first element. This is an obvious instance of lost
update: at most one of these transactions should have
been able to commit.13 We also have less obvious ex-
amples:

r 1167 nil a 1167 4

r 1161 [1 2 4 5 7 6] a 1167 1 r 1167 [1] r 1168 nil

:rw

r 1167 nil a 1167 3

:ww

:ww

:rw

This cluster involves two G-single cycles. The smaller,
comprising just the bottom two transactions, has no
read of key 1167 before the middle transaction’s write:
it is not a classic instance of lost update. However, its
read of key 1167 = [1] implies that the state of that key
prior to its append of 1 must have been empty, which
looks “lost-update-esque.” Moreover, the top transac-
tion also read the unborn version of key 1167 before ap-
pending 4 to it. That, together with the bottom trans-
action, must be lost update.

A later read [:r 1167 [1 3 4]] suggests the follow-
ing sequence of events. All three transactions must
have started before 1167 existed. The middle trans-
action appended 1 and read [1] back. Then the bot-
tom transaction appended 3, and finally the top trans-
action appended 4. All three transactions eventually
committed.

These instances of lost update were caught by Elle’s
cycle detection system, since they were involved in G-
single. However, Elle’s cycle detection relies on infer-
ring the order of writes to a given key, which we can
(mostly) do only if some read observes them. We have
recently extended Elle to detect instances of lost up-
date which are invisible to the cycle detector. In these
tests, we search for two or more committed transac-
tions which read the same version of some key 𝑘, then
all write 𝑘. Regardless of whether we see their effects
or not, the mere fact that both committed implies lost
update. For example:

13Some readers might contend that while this meets the formal definition of “lost update,” the updates themselves aren’t so much
“lost” as simply “stacked on top of each other in potential violation of constraints.” Consider, however, that if these update opera-
tions were blind writes instead of list appends, the resulting state would be indistinguishable from a history in which one of the
writes simply never happened. This is the reason P4 is called “lost update.”

6

https://github.com/ept/hermitage/blob/master/mysql.md#read-skew-g-single
https://s3.amazonaws.com/jepsen.io/analyses/mysql-8.0.34/rr-everything-20231003T100453.595-0500.zip
https://jepsen.io/consistency/models/snapshot-isolation
https://jepsen.io/consistency/models/repeatable-read
https://jepsen.io/consistency/models/repeatable-read
https://github.com/ept/hermitage/blob/master/mysql.md#lost-update-p4
https://s3.amazonaws.com/jepsen.io/analyses/mysql-8.0.34/rr-everything-20231003T100453.595-0500.zip


{:key 892,
:value nil,
:txns
[{:process 6,

:type :ok,
:f :txn,
:value [[:r 892 nil]

[:r 891 nil]
[:append 892 1]
[:r 892 [2 5 4 1]]],

:index 14806,
:time 49518094450}
{:process 18,
:type :ok,
:f :txn,
:value [[:r 892 nil]

[:append 892 8]
[:r 891 [2 3]]
[:append 891 9]],

:index 14842,
:time 49636093552}]}

Both of these committed transactions read the unborn
(nil) version of key 892 and wrote to it. Out of 9,048
successful transactions in this test, our new checker
found 446 distinct transactions involved in 198 in-
stances of lost update. Only 47 of those instances ap-
peared in some cycle.

In short: MySQL Repeatable Read transactions can-
not safely read a value and then write it. The standard
ORM pattern where a program starts a transaction,
loads an object into memory, manipulates it, saves
it back to the database, then commits, may find that
MySQL silently discards those committed changes. Al-
though PL-2.99 Repeatable Read is supposed to make
this pattern safe, MySQL Repeatable Read does not.
MySQL users must instead perform their own explicit
locking.

An attentive reader may have noticed the above exam-
ple is more alarming than first meets the eye. The
first transaction read the empty state of key 892, ap-
pended a single value, then read a version of key 892
including three additional values. Where did those
come from?

3.4 Non-Repeatable Read at Repeatable Read

MySQL Repeatable Read exhibits internal consistency
anomalies: consistency violations whose effects are
visible within a single transaction. These occur even
on a single healthy MySQL node. In that same test
run, 126 of 9,048 committed transactions exhibited in-
ternal consistency errors. For example:

{:op
{:process 12,
:type :ok,
:f :txn,
:value [[:r 1185 nil]

[:append 1185 6]
[:append 1182 8]
[:r 1185 [3 4 2 6]]],

:index 19874,

:time 65980191472},
:mop [:r 1185 [3 4 2 6]],
:expected [6]}

This transaction read the unborn (nil) state of key
1185, and decided to append 6 to it. It then read
key 1185 and observed [3 4 2 6]. Three elements ap-
peared out of thin air. Or consider:

{:op
{:process 19,
:type :ok,
:f :txn,
:value [[:append 1099 10]

[:r 1096 [1 2 3]]
[:append 1096 7]
[:r 1096 [1 2 3 4 5 6 7]]],

:index 18404,
:time 61061580955},
:mop [:r 1096 [1 2 3 4 5 6 7]],
:expected [1 2 3 7]}

This transaction read key 1096 and obtained the list
[1 2 3]. It appended 7, then read the key again, and
found three additional values (4, 5, and 6) inserted in
its place. This is forbidden under PL-2.99 Repeatable
Read: there must be a read-write dependency from
this transaction to some other, and a write-read (or
similar) dependency chain leading back. It is forbid-
den under ANSI Repeatable Read: the transaction
performed two reads of the same object and saw differ-
ent states resulting from a different transaction! The
point of Repeatable Read—both for ANSI and Adya—
is that once a transaction observes some value, it can
count on that value being stable for the remainder of
the transaction. MySQL does the opposite: a write is
an invitation for another transaction to sneak in and
clobber the state you just read.

This behavior allows incredible transactions like the
following, recorded during a repeatable-read work-
load:

set transaction isolation level Repeatable Read;

start transaction;
select name from people where id = 0;

--> "pebble"
update people set gender = "femme" where id = 0;
select name from people where id = 0;

--> "moss"
commit;

This transaction read a person’s name, set their gen-
der, and read their name again. Despite executing at
Repeatable Read, their name spontaneously changed
from “pebble” to “moss”.

Violations of internal consistency are forbidden under
Read Atomic, Causal Consistency, Parallel Snapshot
Isolation, Prefix Consistency, Snapshot Isolation, and
Serializability. It also seems clear that this transac-
tion satisfies ANSI SQL’s informal definition of a “non-
repeatable read.” It violates MySQL’s isolation levels
documentation, which claims that “consistent reads

7

https://s3.amazonaws.com/jepsen.io/analyses/mysql-8.0.34/rr-everything-20231003T100453.595-0500.zip
https://s3.amazonaws.com/jepsen.io/analyses/mysql-8.0.34/rr-everything-20231003T100453.595-0500.zip
https://s3.amazonaws.com/jepsen.io/analyses/mysql-8.0.34/gender-20231003T193907.588.zip
https://software.imdea.org/~andrea.cerone/works/Framework.pdf
https://dev.mysql.com/doc/refman/8.0/en/innodb-transaction-isolation-levels.html#isolevel_repeatable-read
https://dev.mysql.com/doc/refman/8.0/en/innodb-transaction-isolation-levels.html#isolevel_repeatable-read


within the same transaction read the snapshot estab-
lished by the first read.” It contradicts MySQL’s con-
sistent read documentation, which specifically states
that InnoDB assigns a timepoint on a transaction’s
first read, and the effects of concurrent transactions
should not appear in subsequent reads.

If we add other transactions which insert or delete the
row, we can observe rows popping into existence in the
middle of a Repeatable Read transaction:

start transaction;
select name from people where id = 0 --> nil
update people set gender = "butch" where id = 0;
select name from people where id = 0; --> "moss"
commit;

However, we have not yet observed a row vanishing
due to a concurrent delete. Perhaps this is because
the update statement updates no rows, leaving the
snapshot intact. Whatever the reason, the consis-
tent read documentation’s claim that deletes, inserts,
and updates “are treated similarly” appears incorrect:
deletes seem to work differently from inserts and up-
dates.

3.5 Non-Monotonic View

Kleppmann’s Hermitage lists MySQL Repeatable
Read as monotonic atomic view. Per Bailis et al, Mono-
tonic Atomic View ensures that once a transaction 𝑇2
observes an effect of transaction 𝑇1, 𝑇2 observes all ef-
fects of 𝑇1. Even if MySQL Repeatable Read fetches
a fresh snapshot on each write, it might still provide
Monotonic Atomic View if the snapshots are monotone.
This is how Postgres read committed works.

This is not the case in MySQL. In healthy single-
node deployments, MySQL routinely violates Mono-
tonic Atomic View at Repeatable Read. Recall that our
Monotonic Atomic View workload has two rows whose
values are initially 0. Writer transactions increment
the value of row 0, then row 1: both rows’ values should
appear to advance in lockstep. However, the first read
transaction from this monotonic-atomic-view test ob-
served:

start transaction;
select value from mav where id = 0; --> 0
update mav set noop = 73 where id = 1;
select value from mav where id = 1; --> 1
select value from mav where id = 0; --> 0
commit;

This read transaction saw the state of row 0 prior to
the first write transaction. Then it saw the writer’s
increment of row 1. Under monotonic atomic view,
it should have gone on to observe all of the writer’s
effects—including the increment of row 0. However,
when it selected row 0 it saw the old value, not the
new one. This is a non-monotonic read!

MySQL’s consistent read documentation talks about
snapshots extensively, but this behavior doesn’t look
like a snapshot at all. Snapshot systems usually pro-
vide a consistent, point-in-time view of the database

state. They are usually atomic: either all of a transac-
tion’s effects are included, or none are. Even if MySQL
had somehow obtained a non-atomic snapshot from
the middle of the write transaction, it must have seen
the increment of row 0 before the increment of row 1.
This is not the case: this read transaction observed
the increment of row 1 but not row 0. In what sense
can this possibly be considered a snapshot?

3.6 Fractured Read-Like Anomalies with RDS
Serializable

A common strategy for improving both the availabil-
ity and throughput of a production MySQL database
is to deploy one or more read replicas. These replicas
continually apply binlogs that are shipped to them by
the read/write primary instance, accept connections,
and permit read-only transactions to run. Some cloud
vendors (e.g. Amazon RDS) configure one or two read
replicas as a part of their default production deploy-
ment profile.

We found that AWS RDS MySQL routinely violated Se-
rializability at Serializable isolation, even in healthy
clusters. Consider this append test which ran on an
RDS MySQL cluster with the default recommended
production profile. It exhibited several G2-item and
G-single anomalies, like the following:

a 2215 3

a 2219 8 r 2215 [3]

wr

r 2215 nil r 2220 nil r 2219 [8]

rw

wr

The top transaction appended 3 to key 2215, and that
write was visible to the middle transaction. The mid-
dle transaction appended 8 to key 2219, which was vis-
ible to the bottom transaction. However, the bottom
transaction missed the top transaction’s write! All
G-single anomalies we found involved at least three
transactions linked by at least two write-read edges.

Exactly what kind of anomaly is this, and how se-
vere is it? It is clearly an instance of G-single, since
it has exactly one read-write edge. It is also G2-
item, since it does not involve predicates. This im-
plies RDS MySQL’s “Serializable” isolation violates
Snapshot Isolation, Repeatable Read, and Serializ-
ability.

However, G-single is a broad class of anomalies, and
this appears unlike the other instances of G-single
we’ve discussed so far. It is not lost update: no trans-
action reads then writes the same key. Unlike our

8

https://dev.mysql.com/doc/refman/8.0/en/innodb-consistent-read.html
https://dev.mysql.com/doc/refman/8.0/en/innodb-consistent-read.html
https://s3.amazonaws.com/jepsen.io/analyses/mysql-8.0.34/rr-nonrepeatable-insert-delete-20231003T231826.zip
https://github.com/ept/hermitage
https://jepsen.io/consistency/models/monotonic-atomic-view
https://amplab.cs.berkeley.edu/wp-content/uploads/2013/10/hat-vldb2014.pdf
https://github.com/ept/hermitage/blob/master/postgres.md
https://s3.amazonaws.com/jepsen.io/analyses/mysql-8.0.34/rr-mav-20231005T140119.171-0500.zip
https://dev.mysql.com/doc/refman/8.0/en/innodb-consistent-read.html
http://jepsen.io.s3.amazonaws.com/analyses/mysql-8.0.34/20230829T165306.964Z.zip


previous example of G-single which involved a write-
write edge, this anomaly has only write-read and read-
write edges. It somewhat resembles fractured read,
in which a transaction reads only a subset of another
transaction’s writes. However, this anomaly involves
a reader 𝑇3 which observes a writer 𝑇2’s effects, but
does not observe an earlier 𝑇1 which was visible to 𝑇2.
It is in some sense a “transitive” fractured read.

Regarding severity, we observe first that any instance
of G-single, when running all transactions at the Se-
rializable isolation level, is significant. The received
wisdom in the MySQL community is to avoid using
Serializable unless absolutely necessary. The MySQL
manual discourages users from using Serializable at
all, stating:

SERIALIZABLE enforces even stricter rules
than REPEATABLE READ, and is used mainly
in specialized situations, such as with XA
transactions and for troubleshooting issues
with concurrency and deadlocks.

Given this guidance, we would expect users to run
transactions at this strongest isolation level only when
they know they need a high degree of safety, and
are willing to pay the performance cost of extra syn-
chronization in order to rule out anomalies. Graver
still, fractured read-like anomalies (as instances of G2-
item) are forbidden by Repeatable Read. They should
occur only at Read Committed and below. That they
arise at “Serializable” is troubling.

We suspect this behavior is due in part to RDS’s
choice of default parameters for production clus-
ters. Among the large variety of configuration pa-
rameters that govern the behavior of read replicas
is one whose very name should make us uneasy:
replica_preserve_commit_order.14

For multithreaded replicas (replicas
on which replica_parallel_workers is
set to a value greater than 0), setting
replica_preserve_commit_order=ON en-
sures that transactions are executed and
committed on the replica in the same or-
der as they appear in the replica’s relay
log. This prevents gaps in the sequence of
transactions that have been executed from
the replica’s relay log, and preserves the
same transaction history on the replica as
on the source (with the limitations listed
below).

Serializable systems are supposed to guarantee trans-
actions execute in (what appears to be) a total order.
Failing to preserve that order on a replica seems like it
would be a bad thing, even if it permitted more paral-
lelism in applying the log entries. The documentation
goes on to say that while this parameter used to be
disabled by default, MySQL version 8.0.27 and higher
default to replica_preserve_commit_order=ON.
However, RDS’s default parameters still choose
replica_preserve_commit_order=OFF. If we apply
this setting to our local test clusters, we observe simi-
lar instances of G-single and G2-item.

№ Summary Event Required Fixed in
1 G2-item at Repeatable Read None Unresolved
2 G-single at Repeatable Read None Unresolved
3 Lost update at Repeatable Read None Unresolved
4 Non-Repeatable read at Repeatable Read None Unresolved
5 Non-monotonic view at Repeatable Read None Unresolved
6 Fractured read-like anomalies at Serializable (in RDS) None Unresolved

4 Discussion

First, the good news. In our testing, MySQL 8.0.34’s
Read Uncommitted, read committed, and Serializable
isolation levels appeared to satisfy PL-1 read uncom-
mitted, PL-2 Read Committed, and PL-3 Serializable,
respectively. This held both for single nodes and small
clusters with read-only replicas using binlog replica-
tion, and through process pauses, crashes, and net-
work partitions.

Our LazyFS fault injection scheme did not discover
problems with MySQL’s default settings. With
innodb_flush_log_at_trx_commit at the default set-
ting of 1, process crashes followed by the loss of un-
fsynced data did not result in the loss of committed
transactions. When we adjusted that setting to 0,

MySQL fsynced only once every 𝑛 seconds and we ob-
serve data loss.

The bad news: MySQL’s “Repeatable Read” does not
satisfy PL-2.99 Repeatable Read: it exhibits G2-item
anomalies including write skew. It does not satisfy
Snapshot Isolation: it exhibits G-single, including
read skew and lost update. Lost update rules out
cursor stability. Reads in MySQL “Repeatable Read”
are not repeatable, even under the ambiguous defi-
nitions of the ANSI SQL standard. Its transactions
violate internal consistency, which rules out Read
Atomic, Causal, Consistent View, Prefix, and Paral-
lel snapshot isolation. Kleppmann’s 2014 Hermitage
suggested MySQL Repeatable Read might be Mono-
tonic Atomic View, but this cannot be true: we found
monotonicity violations.

14The RDS parameter group for configuring MySQL uses an older name for this setting: slave_preserve_commit_order. MySQL is
in the process of adopting more inclusive language, and Jepsen uses the newer “replica” term wherever possible.

9

https://people.eecs.berkeley.edu/~alig/papers/ramp.pdf
https://dev.mysql.com/doc/refman/8.0/en/replication-options-replica.html#sysvar_replica_preserve_commit_order
https://dev.mysql.com/doc/refman/8.0/en/innodb-parameters.html#sysvar_innodb_flush_log_at_trx_commit
https://github.com/ept/hermitage#summary-of-test-results


Some authors characterize MySQL Repeatable Read
as Snapshot Isolation. For example, Kleppmann’s De-
signing Data-Intensive Applications says “PostgreSQL
and MySQL call their Snapshot Isolation level Repeat-
able Read”.15 Formalizations of Snapshot Isolation
vary, but most make it appear as if all of a trans-
action’s reads occurred at the transaction start time
(plus local changes). This is not true in MySQL: when
a write occurs, multiple reads of a key may reveal
newer versions of that key resulting from other trans-
actions’ writes. Moreover, Snapshot Isolated systems
generally appear as if all of a transaction’s writes oc-
cur atomically. MySQL allows a transaction to read
some, but not all, of another transaction’s writes. This
is inconsistent with every version of Snapshot Isola-
tion we are familiar with.

It isn’t clear what MySQL Repeatable Read actually
is. It allows histories which violate Monotonic Atomic
View and cursor stability; we know it cannot be equal
to or stronger than those models. We have not ob-
served G0 (dirty writes), G1a (aborted reads), G1b (in-
termediate reads), or G1c (cyclic infomation flow); it
appears at least as strong as Read Committed. The re-
peatability of some reads means it is actually stronger
than Read Committed.

Strong Serializable

Serializable

Repeatable

Read

Snapshot Isolation

Read Committed

Read Uncommitted

Monotonic

Atomic View

Cursor

Stability

Strong Session Serializable

MySQL

Repeatable

Read?

Prefix

Causal

Read Atomic

Parallel

Snapshot

Isolation

?
?

?

In this graph of consistency models an arrow from A to
B means that B is strictly stronger than A. By this we
mean the histories permitted by B are a strict subset of
those permitted by A: a system which provides B pro-
vides A as well. It seems likely that MySQL Repeat-
able Read is incomparable to Monotonic Atomic View:
it allows violations of Monotonic Atomic View, but

also rules out some non-repeatable reads that Mono-
tonic Atomic View allows. Likewise, it is incompara-
ble to Repeatable Read: MySQL Repeatable Read ap-
pears to prohibit certain phantoms which are legal un-
der both ANSI and PL-2.99 Repeatable Read. How-
ever, we are unsure exactly which other models are
strictly stronger than MySQL Repeatable Read. Is ev-
ery prefix-consistent history legal under MySQL Re-
peatable Read? Or are they too incomparable? Be-
cause MySQL Repeatable Read’s behavior is so un-
usual, and because we lack a formal definition of its
properties, we are unsure where to draw additional
arrows in the diagram above.

As always, we caution that Jepsen takes an experi-
mental approach to safety verification: we can prove
the presence of bugs, but not their absence. While
we make extensive efforts to find problems, we cannot
prove correctness.

4.1 Does the MySQL Community Know?

The behavior of MySQL Repeatable Read appears
poorly understood in the MySQL community. Several
authors believe Repeatable Read should prevent lost
update. However, several others acknowledge it actu-
ally does not, and advise (for example) explicit locking
tactics. Similarly, many internet sources state (incor-
rectly) that MySQL repeatable reads are repeatable.
This is understandable: MySQL and MariaDB’s own
documentation makes this claim. Those claims are
contradicted by a single sentence in a note buried in
the MySQL consistent reads documentation. Other
blog posts and articles acknowledge (some indirectly)
that MySQL Repeatable Read actually allows non-
repeatable reads.

Cabral and Murphy’s 2009 MySQL Administrator’s
Bible states that MySQL “supports the four standard
isolation levels,” and emphasizes at length that Re-
peatable Read prevents a transaction from observing
another transaction’s concurrent writes:

Using the REPEATABLE READ isolation level,
all reads within a transaction show the
same data values, even if a second trans-
action has committed a data change while
the first transaction was still running. If
a transaction starts, reads a row, waits
60 seconds, and reads the same row again,
both data reads will be the same—even if in
those 60 seconds another transaction has
changed and committed data. The first
transaction has the same data when it re-
peats the read….

REPEATABLE READ may not seem like a
good idea—after all, if the data changes,
shouldn’t a transaction be aware of that?
The problem is that a transaction may take
different actions based on the values of
the data. Data values changing within a

15Kleppman goes on to note in a later section that MySQL/InnoDB fails to prevent lost update, and that this fails to meet “some
authors” definitions of Snapshot Isolation.

10

https://fileadmin.cs.lth.se/cs/Education/EDAF20/lectures/transactions.pdf
https://www.microsoft.com/en-us/research/wp-content/uploads/2016/02/tr-95-51.pdf
https://www.oreilly.com/library/view/designing-data-intensive-applications/9781491903063/
https://www.oreilly.com/library/view/designing-data-intensive-applications/9781491903063/
https://jepsen.io/consistency/models/snapshot-isolation
https://jepsen.io/consistency
https://www.pythian.com/blog/understanding-mysql-isolation-levels-repeatable-read
https://www.pythian.com/blog/understanding-mysql-isolation-levels-repeatable-read
https://priyankvex.com/2018/10/20/tackling-lost-updates-problem-in-database-using-better-isolation-level/
https://levelup.gitconnected.com/preventing-data-inconsistencies-in-mysql-strategies-for-avoiding-lost-updates-cfdb04107f7c
https://www.zghurskyi.com/lost-update/
https://forums.mysql.com/read.php?22,56420,56420#msg-56420
https://vladmihalcea.com/a-beginners-guide-to-database-locking-and-the-lost-update-phenomena/
https://amirsoleimani.medium.com/understanding-database-isolation-level-via-examples-mysql-and-postgres-a86b5502d404
https://flylib.com/books/en/1.63.1.107/1/
https://stackoverflow.com/questions/46315232/how-to-use-transactions-in-mysql-to-avoid-lost-updates
https://forums.mysql.com/read.php?22,56420,57733
https://stackoverflow.com/questions/9060400/repeatable-read-and-second-lost-updates-issue
https://www.up-2date.com/post/lost-update
https://blog.jcoglan.com/2020/10/12/reading-and-writing-part-3/
https://blog.jcoglan.com/2020/10/12/reading-and-writing-part-3/
https://forum.hibernate.org/viewtopic.php?p=2489608
https://stackoverflow.com/questions/10040785/mysql-repeatable-read-and-lost-update-phantom-reads?rq=3
https://www.prisma.io/dataguide/mysql/inserting-and-modifying-data/using-transactions
https://mydbops.wordpress.com/2018/06/22/back-to-basics-isolation-levels-in-mysql/
https://buildatscale.tech/transaction-isolation-level-in-innodb/
https://stackoverflow.com/questions/42668158/mysql-repeatable-read-transaction-unexpected-behavior
https://decentro.tech/blog/decoding-isolation-levels-in-mysql/
https://decentro.tech/blog/decoding-isolation-levels-in-mysql/
https://www.prisma.io/dataguide/mysql/inserting-and-modifying-data/using-transactions
https://www.tutorialspoint.com/mysql/mysql_set_transaction.htm
https://dev.mysql.com/doc/refman/8.0/en/innodb-transaction-isolation-levels.html#isolevel_repeatable-read
https://mariadb.com/kb/en/set-transaction/#repeatable-read
https://dev.mysql.com/doc/refman/8.0/en/innodb-consistent-read.html
https://yizhang82.dev/innodb-repeatable-read
https://dev.to/techschoolguru/understand-isolation-levels-read-phenomena-in-mysql-postgres-c2e
https://www.pythian.com/blog/understanding-mysql-isolation-levels-repeatable-read
https://www.percona.com/blog/what-if-mysqls-repeatable-reads-cause-you-to-lose-money/
https://www.oreilly.com/library/view/mysql-administrators-bible/9780470416914/
https://www.oreilly.com/library/view/mysql-administrators-bible/9780470416914/


transaction may lead to unexpected conse-
quences.

Cabral and Murphy repeat that Repeatable Read “al-
lows a transaction to see the same data for values
it has already read regardless of whether or not the
data has been changed.” In their section on multi-
version concurrency control, they emphasize the inde-
pendence of transaction snapshots:

If a second transaction starts, it “checks
out” its own copy of the data. If the first
transaction makes changes and commits,
the second transaction will not see the data.
The second transaction can only work with
the data it has. There is no way to up-
date the data that the second transaction
sees, though the second transaction could
issue a ROLLBACK and start the transac-
tion again to see the new data.

This is also wrong: writing a row modifies the trans-
action’s local copy of the data.
Grippa & Kuzmichev’s 2021 Learning MySQL states
that MySQL supports all of the SQL:1992 standard
isolation levels. They too claim:

With the REPEATABLE READ isolation level,
there are thus no dirty reads and or non-
repeatable reads. Each transaction reads
the snapshot established by the first read.

However, the section on Serializable isolation actually
demonstrates (perhaps inadvertently) that MySQL’s
Repeatable Read allows both lost update, a change in
read snapshot, and a resulting internal consistency
violation! It then shows that Serializable prevents
those anomalies. It doesn’t name the anomalies, in-
stead opting to say that “this doesn’t make sense”, but
the behavior is visible to a careful reader. It’s not clear
if the authors realize the example contradicts their
earlier claims about non-repeatable reads and snap-
shot integrity.

4.2 Recommendations

The core problem is that MySQL claims to imple-
ment Repeatable Read but actually provides some-
thing much weaker. We see two avenues to resolve
this problem.
The first is to keep MySQL’s behavior as it is, and
to clearly document the consistency model “Repeat-
able Read” actually provides. There is precedent
in other databases: PostgreSQL’s Repeatable Read
is actually Snapshot Isolation, and exhibits behav-
iors which violate PL-2.99 Repeatable Read. How-
ever, PostgreSQL’s documentation eventually men-
tions that their Repeatable Read implementation is
actually Snapshot Isolation. MySQL could similarly
document that their “Repeatable Read” means “Read
Committed, plus some sort of guarantees that hold un-
til the transaction writes something, at which point

mysteries occur.” A precise characterization of those
mysteries would be most welcome.
The second option is to treat these behaviors as bugs
and fix them. Jepsen would be delighted if MySQL
and other vendors were to commit to providing PL-
2.99 Repeatable Read. However, even satisfying the
incomplete, ambiguous ANSI definition of Repeatable
Read would be an improvement over current affairs.
In the meantime, MySQL users who require PL-
2.99 or ANSI Repeatable Read should be cautious of
MySQL Repeatable Read. Reads may not be repeat-
able, or even reflect a snapshot of committed state.
The common ORM pattern in which a transaction
reads an object into memory, modifies it, then writes
it back within a transaction, may cause committed
updates to be silently lost. Users requiring Repeat-
able Read semantics should use MySQL’s Serializable
isolation instead. Alternatively, they can selectively
strengthen reads performed at READ COMMITTED using
locking techniques like SELECT ... FOR UPDATE.

4.3 RDS

AWS RDS MySQL cluster exhibits read skew
and G2-item at its “Serializable” isolation level.
Users who rely on Serializability should set
slave_preserve_commit_order to ON in their RDS pa-
rameter groups. Jepsen suggests that AWS either
change the default, or clearly explain the allowed vi-
olations of Serializability in the known limitations
documentation for RDS MySQL.

4.4 Future Work

MySQL’s binlog replication appears fragile. We ob-
served a number of mysterious scenarios in which
replication halted in our local Jepsen tests. We also
found that a few minutes of testing could completely
break AWS RDS’s MySQL replication: even a simple
CREATE DATABASE would succeed on the primary and
fail to appear on the secondaries. We waited an hour
without observing recovery. MySQL’s default settings
are known to be unsafe in replicated systems. We
made no attempt to promote nodes from secondaries
to primaries, or to explore exciting topologies like ring
or star replication. Future work might explore these
behaviors.
We have begun research into more general-purpose
predicate tests, but this work is still early. Once ready,
we’d like to evaluate MySQL predicate safety and see
if it differs from primary-key operations.

4.5 A Plea to Standards Bodies

Twenty-eight years after Berenson et al. demon-
strated that ANSI SQL’s isolation levels are ambigu-
ous and incomplete, seven revisions of the ANSI &
ISO standards have left its definitions unchanged.16

16From the late 1980s through 1995 NIST performed conformance testing to evaluate whether databases correctly implemented the
SQL standard. One wonders how they would evaluate transaction safety today.

11

https://www.oreilly.com/library/view/learning-mysql-2nd/9781492085911/
https://jepsen.io/analyses/postgresql-12.3
https://www.postgresql.org/docs/current/transaction-iso.html#XACT-REPEATABLE-READ
https://www.postgresql.org/docs/current/transaction-iso.html#XACT-REPEATABLE-READ
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/MySQL.KnownIssuesAndLimitations.html
https://mastodon.jepsen.io/@jepsen/111231274947177218
https://mastodon.jepsen.io/@jepsen/111231274947177218
https://dev.mysql.com/doc/refman/8.0/en/replication-solutions-unexpected-replica-halt.html
https://dev.mysql.com/doc/refman/8.0/en/replication-solutions-unexpected-replica-halt.html
https://mariadb.com/kb/en/replication-overview/#common-replication-setups
https://tdan.com/is-sql-a-real-standard-anymore/4923


P0 is still legal at every level up to Repeatable Read.
We still don’t know whether circular information flow
is legal at Read Committed. P3 still doesn’t men-
tion deletes. Internal behavior remains unspecified.
The research community has moved on to new for-
malisms. Many are based on Adya’s 1999 thesis,
which struggled to capture “what the SQL standard
actually meant.”
If you happen to sit on the ISO/IEC JTC1/SC
32 Data Management and Interchange committee,
please imagine the soft chords of a heart-tugging pi-
ano lament have begun to play. A montage of trans-
actional anomalies appears on your screen. Internal
anomalies. Lost updates. Dirty writes. Jepsen is look-
ing into the camera, holding a database.

Hi. This is Jepsen. Will you be an an-
gel for a helpless database? Every day ma-

jor databases exhibit anomalous behavior
which ISO/IEC 9075-2 fails to characterize.
For just a few pages of formalism, you can
give vendors and users a clear, meaningful,
and portable definition of isolation levels.

It’s been almost three decades. Act now.

Jepsen wishes to thank INESC TEC and in particular
João Azevedo, Ricardo Macedo, João Tiago Paulo, José
Pereira, and Maria Ramos, for building LazyFS. Our
thanks also to Justin Conklin, who contributed ASM
advice and code for a significant performance improve-
ment in Jepsen’s underlying analysis library. Irene
Kannyo provided invaluable editorial support. This
work was performed independently by Jepsen without
compensation, in accordance with the Jepsen ethics
policy.

12

https://www.vldb.org/pvldb/vol7/p181-bailis.pdf
https://www.cs.cornell.edu/lorenzo/papers/Crooks17Seeing.pdf
https://arxiv.org/abs/1903.00731
https://software.imdea.org/~andrea.cerone/works/Framework.pdf
https://software.imdea.org/~gotsman/papers/si-podc16.pdf
http://www.cs.ox.ac.uk/people/hongseok.yang/paper/popl14-final.pdf
https://asc.di.fct.unl.pt/~nmp/pubs/europar-2-2013.pdf
https://dsf.berkeley.edu/cs286/papers/ssi-tods2005.pdf
https://www.inf.usi.ch/faculty/pedone/Paper/2004/IC_TECH_REPORT_200421.pdf
https://www.inf.usi.ch/faculty/pedone/Paper/2004/IC_TECH_REPORT_200421.pdf
https://pmg.csail.mit.edu/papers/adya-phd.pdf
https://pmg.csail.mit.edu/papers/icde00.pdf
https://www.inesctec.pt/en
https://github.com/jgpc42
https://www.irenekannyo.com/
https://www.irenekannyo.com/
https://jepsen.io/ethics
https://jepsen.io/ethics

	Background
	ANSI SQL Isolation is Bad, Actually
	Repeatable Read
	MySQL Isolation

	Test Design
	List Append
	Non-Repeatable Read
	Monotonic Atomic View
	LazyFS

	Results
	G2-item at Repeatable Read
	G-single at Repeatable Read
	Lost Update at Repeatable Read
	Non-Repeatable Read at Repeatable Read
	Non-Monotonic View
	Fractured Read-Like Anomalies with RDS Serializable

	Discussion
	Does the MySQL Community Know?
	Recommendations
	RDS
	Future Work
	A Plea to Standards Bodies


