
RethinkDB 2.2.3 Reconfiguration
2016-01-22

In the previous Jepsen analysis of RethinkDB, we tested single-document reads, writes, and conditional writes,
under network partitions and process pauses. RethinkDB did not exhibit any nonlinearizable histories in those
tests. However, testing with more aggressive failure modes, on both 2.1.5 and 2.2.3, has uncovered a subtle er-
ror in Rethink’s cluster membership system. This error can lead to stale reads, dirty reads, lost updates, node
crashes, and table unavailability requiring an unsafe emergency repair. Versions 2.2.4 and 2.1.6, released last
week, address this issue.

Until now, Jepsen tests have used a stable cluster
membership throughout the test. We typically run the
system being tested on five nodes, and although the
network topology between the nodes may change, pro-
cessesmay crash and restart, and the systemmay elect
new nodes as leaders, we do not introduce or remove
nodes from the system while it is running. Thus far,
we haven’t had to go that far to uncover concurrency
errors.

Since RethinkDB passed its stable-membership parti-
tioning tests, I offered the team a more aggressive fail-
ure model: we’d dynamically reconfigure the cluster
membership during the test. This is a harder problem
than consensus with fixed membership: both old and
new nodes must gracefully agree on the membership
change, ensure that both sets of nodes will agree on any
operations performed during the handover, and finally
transition to normal consensus on the new set of nodes.
The delicate handoff of operations from old nodes to
new provides ample opportunities for mistakes.

1 Rethink’s consensus system

In order for RethinkDB to provide linearizable oper-
ations on a specific key in a table, the cluster must
agree on which nodes should be replicas for a given
piece of data, and which replica will be the primary
for that data—charged with coordinating updates and
linearizable reads. This is the consensus problem, and
RethinkDB uses Raft to obtain that consensus.

Note that Rethink does not use Raft to obtain consen-
sus on the data itself—only on the table metadata: for

a given table, what replicas exist, which one should
be the default primary, and so on. This table meta-
data is called a configuration. By carefully coupling
Rethink’s data replication algorithm to the table con-
figuration, and the configuration to the Raft state, Re-
think can offer linearizable isolation on individual keys
without involving the full Raft state machine for every
operation. This offers two performance benefits: first,
single-key operations do not require the global order
that Raft would impose, which improves concurrency,
and second, RethinkDB can shard its data, so only a
single shard’s (not the entire table’s) replicas must be
involved in a given write or read.

The Raft paper sketches an extension to the consen-
sus algorithm for adding and removing nodes from
the cluster, and Rethink implements that algorithm
for configuration changes—allowing one to add and re-
move replicas (and by extension, Raft nodes) on the fly.
There are two phases to this membership transition.

First, the leader enters a joint-consensus mode, where
it broadcasts messages to all nodes in the old and new
configurations. In order to commit a log entry or be-
come a leader, that request must be acknowledged by
a majority of the old nodes—and independently, a ma-
jority of the new. The leader broadcasts that joint-
consensus configuration as a log entry to all nodes,
which apply it immediately.

Once the joint-consensus mode is committed, neither
the old configuration nor the new configuration can act
independently. This clears the way for the old configu-
ration to be abandoned: a leader broadcasts a message
that only the new nodes should be used, and again, the
followers apply that message to their local Raft state

1

https://jepsen.io/analyses/rethinkdb-2-1-5
https://github.com/rethinkdb/rethinkdb/releases/tag/v2.2.4
https://github.com/rethinkdb/rethinkdb/releases/tag/v2.1.6
https://www.cs.rutgers.edu/~pxk/417/notes/content/consensus.html
https://ramcloud.stanford.edu/raft.pdf


machines immediately.

Nodes may become isolated or fail during the transi-
tion, stranding them with out-of-date ideas about who
should even be involved in making a decision. Their
logs may be overwritten by newer leaders, leading to
confusion about the authoritative state. We can exacer-
bate these problems by introducing network partitions,
which will force larger concurrency windows for the re-
configuration procedure. With luck, Rethink will slip
up during reconfiguration, and we’ll be able to observe
a consistency error.

2 Designing a test

For the test workload, we’ll use the same reads, writes,
and compare-and-set operations over a single docu-
ment from the previous Rethink analysis. Because
checking long histories for linearizability is expensive,
we’ll break up our test into operations on different doc-
uments, and check each one independently—only work-
ing with a given document for ~60 seconds. Since hand-
off generally takes place within 15 seconds, this should
be long enough to detect consistency violations.

The main difference in this test is that we’ll add a new
type of nemesis: the special Jepsen process which in-
troduces failures into the distributed system. We’ll use
RethinkDB’s reconfiguration API to assign a new set of

replicas and a preferred primary node for the test’s ta-
ble. Then, we’ll design a special nemesis which chooses
random replicas and primaries, and reconfigures the
table accordingly.

There’s only one configuration using all five nodes, five
configurations using a single node, but twenty configu-
rations which pick two or three out of five. Based on a
hunch that extreme cluster sizes might be important,
we’ll pick a uniformly random replica count, then select
a random set of replicas to create a set of that size. A
randomly selected default primary rounds out the con-
figuration. We’ll open a connection to the new primary
and ask it to apply our chosen configuration.

That reconfiguration could fail because a server we
need to contact in the reconfiguration is unavailable,
or because the entire table is presently down—at least
as seen from the node doing the reconfiguration. In
both of these cases we’ll perform a limited number of
blind retries, which significantly improves our chances
of finding a reconfiguration possible under the current
network conditions.

To make matters more complex, we’ll combine that
nemesis with partition-random-halves, which divides
the network into randomly selected halves and heals
their connections later. We use nemesis/compose
to combine multiple nemeses into one, routing
:reconfigure ops to our custom reconfiguration
nemesis, and :start/:stop to the network parti-
tioner.

(nemesis/compose
{#{:reconfigure} (reconfigure-nemesis "jepsen" "cas")
#{:start :stop} (nemesis/partition-random-halves)})

A slight change to our generator as well: we’ll emit a :reconfigure op between each stage of the network
partitioner’s :starts and :stops. We also force the nemesis to wait until the client has created the table before
we mess with the table’s replica configuration—that could lead to awkward deadlocks.

(gen/nemesis
(gen/phases

(gen/await
(fn []

(info "Nemesis waiting")
(deref (:table-created? (:client t)))
(info "Nemesis ready to go")))

(->> (cycle [{:type :info, :f :start}
{:type :info, :f :stop}])

(interpose {:type :info, :f :reconfigure})
(gen/seq))))

We know from the last analysis that every consistency level lower than read=majority and write=majority
will lead to nonlinearizable histories, so we’ll only run this test with majority/majority. And indeed, this test,
like those from the previous analysis, passes the linearizability checker several times in a row.

2

https://aphyr.com/posts/329-jepsen-rethinkdb-2-1-5
https://github.com/aphyr/jepsen/blob/d626b9d35305cbc4967ab7d2aae3b34e8720c5b2/rethinkdb/src/jepsen/rethinkdb.clj#L180-L194
https://github.com/aphyr/jepsen/blob/d626b9d35305cbc4967ab7d2aae3b34e8720c5b2/rethinkdb/src/jepsen/rethinkdb.clj#L196-L233
https://github.com/aphyr/jepsen/blob/d626b9d35305cbc4967ab7d2aae3b34e8720c5b2/rethinkdb/src/jepsen/rethinkdb.clj#L207
https://github.com/aphyr/jepsen/blob/d626b9d35305cbc4967ab7d2aae3b34e8720c5b2/rethinkdb/src/jepsen/rethinkdb.clj#L211
https://github.com/aphyr/jepsen/blob/d626b9d35305cbc4967ab7d2aae3b34e8720c5b2/rethinkdb/src/jepsen/rethinkdb.clj#L223
https://github.com/aphyr/jepsen/blob/d626b9d35305cbc4967ab7d2aae3b34e8720c5b2/rethinkdb/src/jepsen/rethinkdb.clj#L223
https://github.com/aphyr/jepsen/blob/d626b9d35305cbc4967ab7d2aae3b34e8720c5b2/rethinkdb/src/jepsen/rethinkdb.clj#L227
https://github.com/aphyr/jepsen/blob/d626b9d35305cbc4967ab7d2aae3b34e8720c5b2/rethinkdb/src/jepsen/rethinkdb/document_cas.clj#L183-L185
https://github.com/aphyr/jepsen/blob/d626b9d35305cbc4967ab7d2aae3b34e8720c5b2/rethinkdb/src/jepsen/rethinkdb/document_cas.clj#L183-L185
https://github.com/aphyr/jepsen/blob/d626b9d35305cbc4967ab7d2aae3b34e8720c5b2/rethinkdb/src/jepsen/rethinkdb/document_cas.clj#L170-L180


But then, a mystery appears.

3 A read anomaly

This diagram shows the operations (green and yellow bars) performed by processes (arranged vertically) over
time (flowing left to right). Green operations succeeded; yellow operations crashed and may or may not take
place. Black lines show the possible legal state transitions through this history, and red lines show inconsistent
state transitions which would violate the rules of a compare-and-set register. For instance, it would be legal to
write 1, then compare-and-set (cas) 1 to 3, because the current value would be 1. But we couldn’t subsequently
read 0, because the register’s value along that path would be 3, not 0.

Because there are no legal paths leading to the first
(or the second, for that matter) read of 0, this history
is nonlinearizable. You can’t write 1, then read 0, if the
only other ops that could take effect would result in the
value being 3 or 4.

This kind of result could indicate several consistency
errors. It could be a stale read: the reads of 0 could
be seeing an earlier legal state, prior to the write of
1. It could be a dirty read, if a write of 0 took place,
failed, but its results were somehow visible to another
transaction. Or it could be a lost update: the write of
1 could have been acknowledged, then discarded. In
order to rule out stale and dirty reads, we can remove
reads from the workload, making every operation ei-
ther a blind or conditional (cas) write.

4 A write anomaly

It gets much worse.

In this history, we write 0, then compare-and-set 3 to
0—which should only succeed if the current value is 3.
There are no concurrent operations, and no reads to
confound our test with read anomalies. This is conclu-
sive evidence that RethinkDB allows inconsistency in
the write path: lost updates.

The full history for this test gives us deeper context.
Process 3 writes 0, the nemesis reconfigures the clus-
ter so that the sole replica is n4, and after a series of

3

https://jepsen.io/analyses/rethinkdb-2-2-3-reconfiguration/history.txt


failed operations we know did not take place, process
17 compare-and-sets 3 to 0.

:nemesis :info :reconfigure
{:replicas (:n3),
:primary :n3,
:grudge {:n3 [(:n4)],

:n4 [(:n3)]}}
12 :invoke :write 3
17 :invoke :cas [4 2]
12 :ok :write 3
17 :fail :cas [4 2]

... lots of failed ops ...

3 :invoke :write 0
3 :ok :write 0
12 :invoke :cas [0 0]
17 :invoke :cas [1 4]
12 :fail :cas [0 0]
17 :fail :cas [1 4]
:nemesis :info :reconfigure

{:replicas (:n4),
:primary :n4,
:grudge {:n4 [(:n3)],

:n3 [(:n4)]}}

... more failed ops ...

12 :invoke :cas [3 3]
17 :invoke :cas [3 0]
12 :fail :cas [3 3]
17 :ok :cas [3 0] <--- Violation

Initially, the primary replica is n3, and n3 is isolated
from n4. Because Jepsen stripes processes across
nodes, process 2, 7, 12, … all talk to node n3. Thus,
process 12 writes 3 to n3, process 3 writes 0 to n4, we

assign n4 as the new primary (again, isolated from n3),
and process 17 CAS’s 3 to 0 on n3.

So node n3 sees a write of 3, and a CAS of 3 to 0. That’s
legal. Node n4 sees a write of 0. Also legal. It’s as if n3
and n4 were running in independent clusters; each one
accepting writes without replicating them to the other.
They are, after all, separated by a network partition.

Weeks of experimentation confirms that changing a
table’s replica configuration while nodes undergo net-
work partitions can induce split-brain phenomena—
but the results are hard to reproduce. It can take min-
utes to hours of reconfiguration, cutting, reconfiguring,
healing, and so on to find one of these cases. Since
most people don’t reconfigure their clusters very often,
I suspect these bugs are unlikely to affect many users
in production.

When it does happen, however, the results are catas-
trophic. Split-brained Raft ensembles will happily as-
sign totally or partially isolated replicas, each of which
believes they have independent authority to service
writes and reads. As far as I can tell, this situation
can continue indefinitely, until an operator notices lost
writes and takes action. The best way to reconcile the
problem, I think, is to identify one of the configurations
you’d like to keep, nuke the other one’s nodes, and pos-
sibly perform an emergency repair on the table to es-
tablish a new final configuration. Keep in mind the
emergency repair process also invalidates consistency
guarantees—it must, in order to recover from inconsis-
tent cluster states.

5 Invalid log windows

This split-brain behavior doesn’t require any nodes to
crash. But sometimes, during these tests, nodes do
crash—and this provides a tantalizing clue:

2016-01-20T19:44:27.156552738 0.051520s error: Guarantee failed:
[index <= get_latest_index()] the log doesn't go forward this far
2016-01-20T19:44:27.156563122 0.051530s error: Backtrace:
...
2016-01-20T19:44:27.288763935 0.183731s error: Exiting.

Once this crash occurs, the node can’t be restarted without crashing again. You can only recover by wiping out
its persistent state and starting afresh.

2016-01-21T20:45:45.069903463 111.702626s error: Error in
./src/clustering/generic/raft_core.tcc at line 1040:
2016-01-21T20:45:45.069933444 111.702656s error: Guarantee failed:
[last >= first - 1]

4



This is bug 4979, originally discovered by the RethinkDB team in October 2015 using their table fuzz-tester.
The apply_log_entries function, which takes a Raft log and applies some of its entries to the local state machine,
ensures that the range of entries it’s being asked to apply is a proper range—the last index can’t be lower than
the first index. The first index likely comes from the local log’s committed index, and the last index probably
comes from a leader’s committed index—which should never be lower than any follower’s index.

There’s something fishy here, but for several months we couldn’t figure out how this situation could arise. The
Rethink team committed a patch which partially addressed the issue back in October, but the issue resurfaced
in fuzz testing and again in Jepsen tests. The cause remained elusive.

6 Multiple Raft leaders

Meanwhile, another crash from these reconfiguration tests points to the possibility of multiple Raft leaders:

2016-01-21T21:02:10.488564358 494.715133s error: Error in
./src/clustering/generic/raft_core.tcc at line 971:
2016-01-21T21:02:10.488589668 494.715158s error: Guarantee failed:
[mode != mode_t::leader]

This assertion relies on the fact that the Raft leader election algorithm guarantees only one node will ever be
the leader for a given term.

/* Raft paper, Section 5.2: "at most one candidate can win the election for a
particular term" If we're leader, then we won the election, so it makes no sense
for us to receive an RPC from another member that thinks it's leader. */
guarantee(mode != mode_t::leader);

And this crash, which occurs on a follower, appears related:

2016-01-21T21:02:10.400077788 494.534726s error: Error in
./src/clustering/generic/raft_core.tcc at line 986:
2016-01-21T21:02:10.400115720 494.534763s error: Guarantee failed:
[current_term_leader_id == request_leader_id]

This assertion double-checks the single-leader invariant by enforcing that once a follower learns who the leader
is for the current term, any writes for that term should come from the same leader:

/* Raft paper, Section 5.2: "at most one candidate can win the election for a
particular term" */
guarantee(current_term_leader_id == request_leader_id);

This hints that somehow, two Raft nodes believed they were the leader for the same term—but again, we don’t
know why. The RethinkDB team and I reviewed their Raft core implementation, but found nothing of conse-
quence.

7 The cause

So we have nodes being asked to apply Raft operations
from behind their committed log index—which is sup-
posed to be stable. We have leaders which discover

other nodes are the leaders for the same term. We have
followers which receive messages from multiple lead-
ers for the same term. These all suggest some kind
of rare edge case leading to a schism in the Raft clus-
ter. Poring over various failure schedules and Jepsen

5

https://github.com/rethinkdb/rethinkdb/issues/4979
https://github.com/rethinkdb/rethinkdb/blob/2a19d3e99554f45160de375db59d696b554c3f2c/src/clustering/generic/raft_core.tcc#L1040
https://github.com/rethinkdb/rethinkdb/blob/2a19d3e99554f45160de375db59d696b554c3f2c/src/clustering/generic/raft_core.tcc#L938
https://github.com/rethinkdb/rethinkdb/blob/2a19d3e99554f45160de375db59d696b554c3f2c/src/clustering/generic/raft_core.tcc#L986


histories suggests that a combination of large (~5 node)
and small (~1 node) replica configurations are involved,
and the problem only manifests when network parti-
tions isolate the small replicas from large ones. But
why?

The Rethink team and I spent several weeks poring
over the code and trying to develop a more efficient
test to reproduce the problem. Rethink’s engineers
fixed a few tangential problems along the way, but
the tests continued to fail until several members of
Rethink’s team identified a deliciously complex bug.
Daniel Mewes’ writeup of their findings is delightfully
comprehensive and well worth your time, but I’ll sum-
marize it here.

As we discussed earlier, RethinkDB runs a Raft cluster
across all replicas for a table (except non-voting repli-
cas). When you add a new node to a table, the existing
Raft cluster for that table picks a Raft node ID for the
new replica, then contacts the multi table manager on
the new node, which spins up a new instance of Raft
with that ID. From there, the Raft joint-consensus pro-
tocol takes care of transitioning to the new node con-
figuration. When you remove a replica, the multi table
manager destroys the Raft instance and wipes its stor-
age clean.

If a removed replica is later re-added, the existing clus-
ter would pick a new node ID and send a new ACTIVE

message to the multi table manager on that replica.
The fresh node ID ensures that the cluster knows the
new Raft node has no data yet. If we re-used a node
ID on a node whose state has been wiped, then it could
appear that node had remained in the cluster but lost
all its data—which would violate Raft’s assumptions
about stable node storage.

Consequently, it’s crucial that the multi table manager
processes ACTIVE and INACTIVE messages in order. If
a node ever applied an old ACTIVE message a second
time, it’d re-use the former node ID, which would ap-
pear as data loss to other nodes who still believe that
node is in the cluster. Therefore, every ACTIVE and
INACTIVE message includes a monotonic logical times-
tamp, ordered by the Raft cluster itself. The multi ta-
ble manager will only apply an ACTIVE or INACTIVE
message if its timestamp is higher than the current
state. This ensures that node IDs are not re-used.

Except.

A bug in 2.1.0 allowed replicas to generate timestamps
of 263: the maximum integer size. This prevented the
multi table manager from ever applying any newer con-
figuration, effectively locking replicas in an inactive
state. As a workaround, the multi table manager’s
message ordering code has an escape hatch: it always
allows INACTIVE -> ACTIVE transitions regardless of
their timestamp.

/* If we are inactive and are told to become active, we ignore the
timestamp. The `base_table_config_t` in our inactive state might be
a left-over from an emergency repair that none of the currently active
servers has seen. In that case we would have no chance to become active
again for this table until another emergency repair happened
(which might be impossible, if the table is otherwise still available). */
bool ignore_timestamp =

table->status == table_t::status_t::INACTIVE
&& action_status == action_status_t::ACTIVE;

So, if messages are delayed or reordered during a clus-
ter reconfiguration (say, due to a network partition),
and a replica is removed from a table, and that mes-
sage delay allows a duplicate ACTIVE message to be de-
livered to that replica after it’s received an INACTIVE,
it’s possible for that replica to rejoin the cluster using
its old node ID, but with all its data missing.

Suffering from retrograde amnesia, that replica can in-
duce chaos in the Raft cluster. For example, it can
re-cast votes for elections it already participated in.
That allows two leaders to win the election for a sin-
gle term—which explains the leader invariant viola-
tions we saw earlier. With two leaders comes incon-
sistency about committed log offsets, which explains

the log index crashes as well. Both leaders can elect
independent RethinkDB primaries, which can go on to
independently satisfy reads and writes—causing the
anomalies we saw in the test.

With this special case removed, RethinkDB appears to
pass Jepsen’s linearizability tests during network par-
titions and reconfigurations. There may be other bugs
lurking in the depths, but after dozens of hours of test-
ing, we think things are relatively safe.

6

https://github.com/rethinkdb/rethinkdb/issues/5289#issuecomment-175394540
https://github.com/rethinkdb/rethinkdb/issues/4668
https://github.com/rethinkdb/rethinkdb/blob/v2.2.3-1/src/clustering/table_manager/multi_table_manager.cc#L330


8 Discussion

RethinkDB passed initial Jepsen tests, providing lin-
earizable single-key operations through network par-
titions. However, long-running tests, involving ran-
domized network partitions and reconfiguring the clus-
ter membership, resulted in nonlinearizable histories:
stale reads, illegal compare-and-sets, and the loss of
acknowledged operations.

These faults stem from a violation of the Raft algo-
rithm’s assumptions around stable storage for each
Raft node—which occurred because the system respon-
sible for creating and destroying Raft nodes could,
with the right order of message deliveries, apply con-
fig changes out of order, causing a node to re-use an
old Raft node ID. That reordering was only possible
because of a special workaround for a bug in an older
version of RethinkDB.

The RethinkDB team has identified the error and has
released version 2.2.4 with a patch. They’ve also back-
ported the fix to 2.1.6.

What are the risks to users? The RethinkDB team
and I suspect it’s unlikely this bug will occur out-
side of stress testing. Cluster reconfiguration is typ-
ically infrequent, and users would need a specific se-
ries of network failures or other message delays which
happen to cut the replicas apart—in a way which al-
lows both network components to find independent ma-
jorities for their respective table configurations. In
Jepsen tests, it usually takes tens to hundreds of par-
tition/reconfigure rounds to trigger this bug.

RethinkDB’s engineers noted three takeaways from
tracking down this bug. First, fuzz-testing—at both
the functional and integration-test level, can be a pow-
erful tool for verifying systems with complex order de-

pendence. Second, runtime invariant assertions were
key in identifying the underlying cause. A test like
Jepsen can tell you that the cluster can exhibit split-
brain behavior, but can’t tell you anything about why.
The error messages from those leader and log order as-
sertions were key hints in tracking down the bug. Re-
think plans to introduce additional runtime assertions
to help identify future problems. Finally, they plan to
devote more attention to issues which suggest—even
tangentially—consistency errors.

More generally, this adventure illustrates that time-
honored aphorism: “distributed systems are hard”.
Managing cluster transitions—leader elections, recov-
ering from crashes, adding nodes, removing nodes…
these processes involve complex and subtle protocols.
Even when a peer-reviewed consensus algorithm is em-
ployed, and the implementation carefully tested, prob-
lems can arise at the boundary around the consen-
sus algorithm’s core. We saw this in etcd and Consul,
which ordered writes safely, but allowed stale reads by
improperly coupling reads to local leader state. In Re-
think’s case, the Raft implementation’s assumptions
were compromised by allowing the system to re-use
node identifiers. This is where static and runtime in-
variant checking, verified by generative testing tech-
niques, can help identify subtle bugs.

My thanks to the entire RethinkDB team, especially
Daniel Mewes, Jeroen Habraken, Michael Glukhovsky,
Michael Lucy, Slava Akhmechet, and Tim Maxwell, for
their enthusiastic support of this research. I am also
indebted to Jared Morrow, Marc Hedlund, and Kelly
Norton for their comments and questions. This report
comprises the second half of a two-part contract with
RethinkDB, and was conducted in accordance with the
Jepsen ethics policy.

7

https://github.com/rethinkdb/rethinkdb/releases/tag/v2.2.4
https://github.com/rethinkdb/rethinkdb/releases/tag/v2.1.6
https://aphyr.com/posts/316-jepsen-etcd-and-consul
https://twitter.com/_jared/status/696173686663938048
https://twitter.com/marcprecipice
http://kellegous.com/
http://kellegous.com/
http://jepsen.io/ethics.html

	Rethink's consensus system
	Designing a test
	A read anomaly
	A write anomaly
	Invalid log windows
	Multiple Raft leaders
	The cause
	Discussion

