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Tendermint is a distributed, byzantine fault-tolerant consensus system designed to replicate arbitrary state ma-
chines. We experimentally verify Tendermint’s safety properties using its built-in key-value store, Merkleeyes, as
the hosted state machine, while creating simple and complex network partitions, clock skew, process crashes,
write-ahead-log truncation, simple byzantine faults, and dynamic membership reconfiguration. We discovered a
single-node data corruption issue in Merkleeyes, a fatal crash in Merkleeyes WAL recovery, and a potential data-
loss issue in the Tendermint WAL, but otherwise found no cases of nonlinearizable behavior, so long as byzantine
validators control less than 1/3 of the vote. This work was funded by the Tendermint team, and conducted in
accordance with the Jepsen ethics policy.

1 Background

Tendermint is a server and a protocol for building lin-
earizable (or sequentially consistent) byzantine fault-
tolerant applications. Tendermint validators accept
transactions from clients over HTTP, and replicate
them to the other validators in the cluster, forming a
totally ordered sequence of transactions. Each trans-
action is verified by a cryptographic signature over the
previous transaction, forming a blockchain. As long as
more than 2/3 of the cluster is online, connected to each
other, and non-malicious, progress and linearizability
of transactions is guaranteed. In the presence of byzan-
tine validators which control 1/3 or more of the voting
power, safety is no longer guaranteed: the cluster may
exhibit split brain behavior, discard committed trans-
actions, etc.

Transactions are first broadcast, via a gossip protocol,
to every node. A proposer, chosen by a deterministic
round-robin algorithm, bundles up pending transac-
tions into a block, and proposes that block to the clus-
ter. Nodes then pre-vote on whether they consider the
block acceptable, and broadcast their decision. Once a
2/3 majority pre-vote yes, nodes pre-commit the block,
and broadcast their intention to commit. Once 2/3 of
the cluster has pre-committed a block, the block can
be considered committed, and the initiating node can
learn the transaction is complete. Tendermint there-

fore requires four network hops to complete a transac-
tion, given a totally-connected non-faulty component of
the cluster holding more than 2/3 of the total votes.1

Proposers create and propose new blocks roughly once
a second, though this behavior is configurable. This
adds about 500 ms of latency to any given transac-
tion.2 However, because a block encompasses multi-
ple transactions, transaction throughput is not limited
by this latency, so long as transactions can commit
regardless of order. Where one transaction depends
on another—for instance, when multiple actors concur-
rently update a record using a [read, compare-and-set]
cycle, throughput is inversely proportional to network
latency plus proposer block delay.

Like Bitcoin and Ethereum, Tendermint is a
blockchain system. However, where Bitcoin defines
a currency, and Ethereum defines a virtual machine
for computation, Tendermint deals in opaque trans-
actional payloads. As in Raft, the semantics of those
transactions are defined by a pluggable state machine,
which talks to Tendermint using a protocol called the
ABCI, or Application BlockChain Interface.3 There
are therefore two distinct programs running on a typ-
ical Tendermint node: the Tendermint validator, and
the state machine application. The two communicate
via ABCI over a socket.

There are several ABCI applications for use with Ten-
1There exist byzantine fault tolerant consensus algorithms which require only two network delays in the common case, instead of four;

for instance, Martin & Alvisi’s Fast Byzantine Paxos.
2Typical latencies for blockchain systems are on the order of seconds to minutes; ~1 second latencies are relatively quick by comparison.
3Most Raft implementations are built as language-specific libraries, with an API for plugging in state machine logic. Tendermint differs

in that it runs the consensus system and state machine in separate binaries.
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dermint, including Ethermint, an implementation of
Ethereum; Basecoin, an extensible proof-of-stake cryp-
tocurrency, and Merkleeyes, a key-value store support-
ing linearizable reads, writes, and compare-and-set op-
erations, plus a weaker, sequentially consistent read
of any node’s local state. In these tests, we’ll use
Merkleeyes to evaluate the combined safety properties
of Tendermint and Merkleeyes together; we have not
evaluated Ethermint or Basecoin.

2 Test Design

We model Merkleeyes as a linearizable key-value store
supporting single-key reads, writes, and compare-and-
set operations, and use the Jepsen testing library to
check whether these operations are safe. Jepsen sub-
mits transactions via Tendermint’s HTTP interface,
using /broadcast_tx_commit to block until the trans-
action can be confirmed or rejected. Jepsen then ver-
ifies whether the history of transactions was lineariz-
able, once the test is complete.

We introduced three modifications to Merkleyes to sup-
port this test. Originally, users queried Merkleeyes by
performing a local read on any node, instead of going
through consensus. This allowed stale reads, so the
Tendermint team added support for read transactions,
which should be fully linearizable.

In addition, one cannot execute the same transaction
more than once in Tendermint: two transactions with
the same byte representation—say, “write meow to key
cat”—are considered to be the same transaction. Ten-
dermint’s maintainers added a 12-byte random nonce
field to the start of Merkleeyes transactions, which lets
us perform the same operation more than once.

Early experiments also led to crashes and storage cor-
ruption in Merkleeyes, which the Tendermint team
traced to a race condition in check_tx, where rapid
mutation of the on-disk tree representing the current
data store could lead to premature garbage collection
of a tree node which was still in use by the most recent
version of the tree. While a full fix was not available
during our tests, Tendermint provided Jepsen with a
Merkleeyes build patched to work around the issue.

2.1 Compare-and-set Registers

We designed two tests for Tendermint. The first, cas-
register, performs a randomized mix of reads, writes,
and compare-and-set operations against a small pool
of keys, rotating through keys over time. We verify the

correctness of these operations using the Knossos lin-
earizability checker. To improve per-operation latency
at the cost of throughput, we lower or altogether skip
the commit timeout, putting transactions through con-
sensus immediately instead of waiting to batch them
together.

Unlike many quorum or leader-based distributed sys-
tems, Tendermint nodes have no notion of “the system
is down”, and will never reject a transaction for want of
available replicas. This is partly a consequence of its
leaderless design: nodes have no way to recognize that
they are, for instance, followers who cannot execute
a transaction. This also stems from Tendermint’s ag-
gressive use of asynchronous gossip for state exchange:
even if a node cannot directly replicate a transaction
to a 2/3 majority of peers, it may be able to reach one
peer who can re-broadcast the transaction to a major-
ity eventually.

This makes verifying Tendermint somewhat difficult:
when the network is partitioned, in-flight requests will
hang for a significant amount of time—potentially the
duration of the partition. Moreover, these indefinite
latencies persist so long as the system is degraded, in-
stead of being a transient phenomenon. Jepsen needs
to keep performing requests, so after a timeout, we
declare those operations indeterminate and perform
new ones. Whether we perform timeouts or not, this
introduces large windows of concurrency for transac-
tions, which has two consequences: first, it increases
the state space for the linearizability checker, leading
to slow and potentially impossible-to-analyze histories,
and second, it increases the number of legal states
at any given point, which prevents us from catching
anomalies—cases where the system reached an illegal
state.

To address the performance problem, we added a new
algorithm to Knossos, based on Lowe, Horn and Kroen-
ing’s refinement of Wing & Gong’s algorithm for veri-
fying linearizability. Following Lowe’s approach, we
apply both Lowe’s just-in-time graph search (already
a part of Knossos) and Wing & Gong’s backtracking
search in parallel, and use whichever strategy termi-
nates first. This led to dramatic speedups—two orders
of magnitude—in verifying Tendermint histories.

However, the indeterminacy problem is not a perfor-
mance issue, but rather an inherent consequence of
our test design. To keep state spaces small, Jepsen
linearizability tests typically use reads, writes, and
compare-and-set over a small space of values: for in-
stance, the integers {1, 2, 3, 4, 5}. We detect nonlin-
earizable histories by observing an impossible opera-
tion, like “read 3” when the set of legal values, at that
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point in the history, was only {1, 2}. When there are
many concurrent writes, we saturate the state space:
more and more values are legal, and fewer and fewer
reads are illegal. It becomes harder and harder to de-
tect errors as the test goes on andmore operations time
out.

We need a complementary approach.

2.2 Sets

In addition to the cas-register test, we have a second
test which uses a single key in Merkleeyes to store a
set of values. Each client tries to add a unique number
i to this set, by reading the current set S, and perform-
ing a compare-and-set from S → (S ∪ {i}). At the end
of the test, we read the current key from Merkleeyes
and identify which numbers were preserved.

If the system is linearizable, every prior add operation
should be present in the read set; we can verify this
in O(n) time, instead of solving the NP-hard problem
of generalized linearizability verification. Moreover,
crashed operations have no effect on the safety of other,
concurrent operations; we don’t have to worry about
the state space saturation problem that limits the lin-
earizable register test. On the other hand, we cannot
detect transient errors during the test; the system is
free, for instance, to be sequentially or even eventually
consistent, so long as all successful adds appear in time
for the final read(s).

3 Failure Modes

While running these test workloads, we introduce a
number of faults into the cluster, ranging from clock
skews, crashes, and partitions, to byzantine faults
like duplicate validators with partitions, write-ahead-
log truncation, and dynamic reconfiguration of cluster
membership.

3.1 Clocks

Tendermint uses timeouts to trigger fault detection
and new block proposals. We interfere with those
timeouts through a randomizedmixture of long-lasting
clock offsets and high-frequency clock strobing, in-
tended to create both subtle and large difference be-
tween node clocks, and to trigger single-node timeouts
earlier than intended. While clock skew can induce de-
lays and timeouts in Tendermint, it does not appear to
affect safety: we have yet to observe a nonlinearizable
outcome in either register or set tests.

3.2 Crash Safety

We evaluate crash-safety by killing Tendermint and
Merkleeyes on every node concurrently, then restart-
ing them, every 15 seconds. Connections drop and in-
flight transactions will time out, but once restarted, it
only takes 5–10 seconds to restore normal operation.

Figure 1: Latency of Tendermint transactions through total-cluster crash and restarts
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In this plot of a set test’s latencies, shaded regions in-
dicate the window where nodes were crashed. Note
that latencies spike to 2–10 seconds initially, then con-
verge on 500-1000 ms once the cluster recovers. Low-
latency failures are connection-refused errors. info
operations are indeterminate; they may have either
succeeded or failed.

3.3 Network Partitions

We evaluated Tendermint safety with several classes of
network partitions. We isolate individual nodes; split
the cluster cleanly in half; or construct overlapping-
ring topologies, where nodes are arranged in a ring,
and each node is connected to its nearest neighbors,
such that every node can see a majority of the cluster,
but no two nodes agree on what that majority is. Al-
though we can induce latency spikes with single-node
partitions, and long-lasting downtime by splitting the
cluster in half or with majority rings, no network par-
tition resulted in nonlinearizable histories.

3.4 Byzantine Validators

Verifying byzantine safety is, in general, difficult: one
must show that malicious validators are unable to com-
promise safety, which requires that we know (and im-
plement) appropriately pernicious strategies. For time
reasons, we have not built our own byzantine Tender-
mint validators. However, we can test somemeasure of
byzantine fault tolerance by running multiple copies of

legal validators with the same validator key, and feed-
ing them different operations. These duplicate valida-
tors will fight over which history of blocks they prefer—
using their signing key to vote twice for different alter-
natives, and, hopefully, exposing safety issues.

Unfortunately, these types of byzantine validators do
not seem capable of causing nonlinearizable histories—
so long as we constrain byzantine validator keys to own
less than 1/3 of the total votes. If they own more than
1/3 of the votes, then it is theoretically possible to ob-
serve nonlinearizable histories.

For instance, consider a four node cluster: two nodesA
andA′ with the same validator key, and non-byzantine
nodes B and C. Let the key shared by A and A′ have 7
votes, and B and C have 2 votes each. The total num-
ber of votes in the cluster is therefore 11, and any group
of nodes with at least 8 votes controls a 2/3 majority
and can commit new blocks. Without loss of general-
ity, if A proposes transaction T and B votes for it, then
[A, B] has 9 votes and can legally commit. At the same
time, [A′, C] also has 9 votes and can commit a totally
independent block, leading to inconsistency.

However, this anomaly is difficult to observe: when
a Tendermint node encounters two conflicting blocks
which were both signed off on by the same key, that
node crashes, and a majority of the cluster quickly
comes to a halt.

Clusters with these “super-byzantine” validators tend
to kill themselves before we can observe safety viola-
tions. We need a more sophisticated approach.

panic: Panicked on a Consensus Failure: +2/3 committed an invalid block:
Wrong Block.Header.LastBlockID. Expected
25D18C27F8E1DC2C0F858D80DDBBE272E1DA9E27:1:567B03A9A6FC, got
EE5BD42D329C8925123AF994FDF25E2D1053D2C8:1:A3D3511E2531

3.5 Byzantine Validators with Partitions

To observe divergence, we need to keep both compo-
nents of the network independent from one another
long enough for both to commit—for instance, through
a particular type of network partition. We use two in
the Tendermint Jepsen tests. The first picks one of the
duplicate validators to participate in the current clus-
ter, and isolates the others completely, unable to make
progress. As duplicate validators swap in and out of
themajority component, we simulate a single validator
which is willing to go back on its claims—voting differ-
ently for the same blocks. This technique can result
in nonlinearizable histories, but only when duplicate
validator keys control more than 1/3 of the vote.

A second, more robust partition splits the cluster
evenly, such that each duplicate validator is in contact
with roughly half of the non-byzantine nodes. This ap-
proach yields safety violationsmore reliably, since both
components have sufficient votes to perform consensus
independently. For instance, in this run, several con-
current set tests report the loss of a handful of trans-
actions:

{:valid? false,
:lost "#{96 110 119..120 122 126}",
:recovered "#{}",
:ok "#{0 3 5 ... 123 125 128}",
:recovered-frac 0,
:unexpected-frac 0,
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:unexpected "#{}",
:lost-frac 2/43,
:ok-frac 53/129}

However, so long as byzantine validators control less
than 1/3 of the vote, Tendermint appears to satisfy its
safety claims: histories are linearizable and we do not
observe the loss of committed transactions.

3.6 File Truncation

To make the crash-recovery scenario somewhat more
aggressive, we introduce a byzantine variant, where
write-ahead-logs are truncated during a crash. This
simulates the effects of filesystem corruption. We kill
Tendermint and Merkleeyes on up to 1/3 of the valida-
tors, chop a few random bytes off the Merkleeyes Lev-
elDB logs on those nodes, then restart. Because Ten-
dermint is byzantine fault-tolerant, we should be able
to arbitrarily corrupt logs on up to 1/3 of the cluster
without problems.

This scenario does not appear to lead to the loss of ac-
knowledged operations, but it can cause Merkleeyes to
panic on startup, as the LevelDB recovery process is
unable to handle logfile truncation under certain cir-
cumstances. If more than 1/3 of the validators experi-
ence this type of fault, it could render the cluster unus-
able until a suitable program can be written to process
the LevelDB log files.

We believe this is due to one ormore bugs in goleveldb’s
recovery code; there have been reports of similar pan-
ics in goleveldb from Prometheus and Syncthing, and
consequent bugfixes which may address the issue in
Tendermint as well. The Tendermint team plans to up-
date goleveldb and see if this addresses the problem.

In addition toMerkleeyes, Tendermint’s consensus sys-
tem has its own write-ahead log. Unlike Merkleeyes,
truncated entries in the Tendermint WAL are silently
ignored, and preceding entries are correctly recovered
instead of panicking the server.

Because 2/3 of the cluster remains online in our sce-
nario, Tendermint can continue processing transac-
tions throughout the test. However, there is a dis-
tinct impact any time a node crashes: that node closes
connections and refuses new ones, which results in a
stream of low-latency failures in the latency distribu-
tion. We also see elevated latencies—on the order of
three to four seconds—due to the repeated failure of a
single node. Because nodes take turns proposing new
blocks in Tendermint, the failure of any single node dis-
rupts the commit process for 1 : n blocks—the remain-
ing nodes must wait for timeout_propose (which de-
faults to three seconds) until a healthy node can retry
the proposal. These elevated latencies persist until the
down node recovers, or until it is ejected from the val-
idator set, e.g. by an operator. Note that this is differ-
ent than a leader-based system like Raft, where the
loss of a leader causes every transaction to time out or
fail, but once a new leader is elected, latencies return
to normal.

Figure 2: Set test latencies through repeated crashes, truncations, and restarts of Tendermint nodes.
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So long as truncation affects less than 1/3 of the clus-
ter, Tendermint appears safe; we have not identified
any linearizability violations due to WAL truncation.
However, there is a more subtle problem lurking in
the Tendermint WAL: it doesn’t fsync operations to
disk. When transactions are written to the log, Ten-
dermint calls write (2) before returning, but fails
to fsync. This implies that operations acknowledged
as durable may be lost if, say, the power fails. Ten-
dermint closes and reopens files regularly, but close
(2) doesn’t fsync either. Due to time constraints, we
have not experimentally reproduced this behavior, but
it seems likely that a simultaneous power failure af-
fecting more than 1/3 of the cluster could cause the
loss of committed transactions. Tendermint is work-
ing to ensure data is synced to disk before considering
it durable.

3.7 Dynamic Reconfiguration

Tendermint supports dynamic cluster membership: a
special transaction type allows operators to reweight
validator votes, add new validators, or remove existing
validators, at runtime. In addition, we can start and
stop instances of validators on physical nodes, creat-
ing cases where validators are running nowhere, move
from node to node, or run on n nodes concurrently: a
byzantine case.

We designed a state machine for modeling cluster
state, generating randomized transitions, ensuring
those transitions result in legal cluster states, and ap-
plying those transitions to the cluster. We ensure that
2/3 of the cluster’s voting power remains online, that
less than 1/3 of the cluster is down or byzantine, that
no more than 2 nodes run validators which are not a
part of the cluster config, and that no more than 2 val-
idators in the config are offline at any time.

These rules keep the cluster in a continuously healthy
state, which is important because changing the val-
idator set requires that Tendermint is still capable of
committing transactions—if we prevent Tendermint
from making progress, we won’t be able to continue
the test, or, for that matter, change the membership
to fix things. Similar constraints prevent us from test-
ing network partitions combined with reconfiguration,
at least in general: a partition might prevent the clus-
ter from repairing faulty replicas between transitions,
leading to safe states which are, in actuality, unsafe.

With these caveats, we found no evidence of safety vi-
olations through hundreds of cluster transitions. Ten-

dermint appears to preserve linearizability, so long as
the aforementioned constraints are satisfied.

4 Discussion

We uncovered three durability issues in our research.
The first is a crash in Merkleeyes, the example key-
value store, where the on-disk store could become cor-
rupt due to repeated updates on a single key. The sec-
ond is a bug in goleveldb, which causes Merkleeyes to
crash when recovering from a truncated logfile. The
third is a problem with the Tendermint WAL, which is
not synced to disk before operations are acknowledged
to clients. If more than 1/3 of the cluster experiences,
say, power failure, it might allow the loss of acknowl-
edged operations. All three of these issues are con-
firmed by the Tendermint team, and patches are under
development.

Otherwise, Tendermint appears to satisfy its safety
guarantees: transactions appear linearizable in the
presence of simple and complex network partitions,
clock skew, and synchronized crash-restart cycles. In
addition, Tendermint appears to tolerate byzantine
faults on less than 1/3 of the cluster, including dupli-
cated validators with or without partitions, dynamic
membership changes, and file truncation.

As an experimental validation technique, Jepsen can-
not prove correctness; only the existence of bugs. Our
experiments are limited by throughput, cluster recov-
ery time, and operation latency; as Tendermint ma-
tures and performance improves, we might be able to
detect faults more robustly. It is also possible that
composite failure modes—for instance, changing the
nodes in a validator set during a particular network
partition—might prove fruitful, but we have not ex-
plored those here.

We have also not formally proved the cryptographic
or safety properties of Tendermint’s core algorithm,
nor have we model-checked its correctness. Future re-
search could engage formal methods to look for patho-
logical message orders whichmight lead to safety viola-
tions, or cryptographic attacks against the Tendermint
consensus algorithm.

This research was funded by the Tendermint team, and
conducted in accordance with the Jepsen ethics policy.
We would like to thank Tendermint for their assistance
in designing these tests, and for developing new Tender-
mint features to support Jepsen testing.
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