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TiDB is a distributed, auto-sharded SQL database based on Google’s Percolator model. Despite promising snap-
shot isolation, TiDB 2.1.7 through 3.0.0-beta.1-40 allowed read skew and lost updates by default, thanks to two
auto-retry mechanisms which blindly re-applied updates when a transaction conflicted. TiDB also supports a
select ... for update statement which mostly, but not entirely, prevents write skew. We found a minor race
condition in table creation, reduced durability & fault tolerance in fresh clusters, and several crashes on startup.
With both auto-retry mechanisms disabled, TiDB 2.1.8 through 3.0.0-beta.1-40 passed our tests for snapshot iso-
lation and single-key linearizability. 3.0.0-rc.2, which disables auto-retry by default, also passes. Finally, TiDB
has a theoretical dependence on CLOCK_MONOTONIC_RAW for safety, but we have not yet observed anomalies due to
clock skew, possibly due to tooling limitations. PingCAP has published a companion blog post to this report. This
work was funded by PingCAP, the makers of TiDB, and conducted in accordance with the Jepsen ethics policy.

1 Background

In 2010, Google engineers Daniel Peng & Frank Dabek
published Large-scale Incremental Processing Using
Distributed Transactions and Notifications, which de-
scribed Percolator: a Google-internal database for ran-
dom access transactional workloads where low laten-
cies are not required. Percolator uses a global co-
ordination service called a timestamp oracle (TSO,
for short) to allocate a monotonically increasing se-
quence of transaction timestamps. Data is stored in
Bigtable, a horizontally scalable key-value store, which
offers atomic read-modify-write on individual records.
Transactions are executed by stateless clients, which
use the timestamp oracle and Bigtable to provide a
snapshot isolated multi-dimensional key-value store.

Rows in Percolator are stored as a sequence of dis-
tinct Bigtable records: one for each version. A single
metadata record tracks the state of the row, includ-
ing whether that row is locked by a transaction, or a
pointer to that row’s current version. A transaction be-
gins by acquiring a start timestamp from the TSO. It
then acquires a lock (via Bigtable compare-and-set) on
each row to be written, checking to make sure that no
other transaction has locked that record. Once a lock is
acquired, the transaction writes a new version of that
row at the transaction’s start timestamp. If every cell
was locked and written successfully, the transaction

may commit; it obtains a commit timestamp from the
TSO and replaces each lock record with a write record
pointing to that transaction’s written value.

Crashed transactions are cleaned up lazily, when new
transactions encounter conflicting locks. Every trans-
action designates one of its locks as the primary lock;
this record is used to determine whether the entire
transaction commits. If the primary lock is committed,
the crashed transaction is rolled forward—otherwise,
it is rolled back. Compare-and-set on the primary lock
prevents transactions from racing to commit or abort.

PingCAP’s database, TiDB, adapts Percolator’s model
for use as a general-purpose SQL database. Like Per-
colator, it’s comprised of three components:

• Placement Driver (PD): allocates timestamps and
coordinates shards

• TiKV: a sharded, horizontally-scalable key-value
store

• TiDB: a transactional SQL layer which stores
data in TiKV

Placement Driver is replicated via the Raft consensus
algorithm for fault tolerance. Likewise, each TiKV
shard is replicated with Raft, and stores data on lo-
cal disks using RocksDB, a log-structured merge-tree.
Shards automatically split and merge as data volumes
change, or as hotspots arise.

TiDB nodes, by contrast, are stateless clients of TiKV:
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any number can run independently. They expose a
mostly MySQL-compatible interface for clients.

There are some wall-clock dependencies in TiDB.
Placement Driver, for instance, allocates timestamps
based on local wall-clocks, but ensures monotonicity
through Raft plus a leader lease. Clock skew between
PD nodes can cause allocated timestamps to diverge
from wall time, but shouldn’t result in prolonged un-
availability: PD will allocate timestamps in the future
if its own clock falls behind what’s committed to Raft.

To improve throughput, PD nodes reserve a batch of
timestamps in a single Raft operation. No other node
can reserve the same batch, which means that the re-
serving node is free to allocate those timestamps inde-
pendently. However, this creates the possibility that
two leaders (say, due to a network partition) might allo-
cate non-monotonic timestamps concurrently. PD uses
leader leases based on CLOCK_MONOTONIC_RAW to miti-
gate this.

1.1 Consistency

TiDB’s transaction isolation documentation explains
that TiDB provides snapshot isolation, but, for com-
patibility with MySQL, calls it repeatable read. The
documentation is therefore somewhat confusing: some
of its descriptions of repeatable read actually refer to
repeatable read, and other parts refer to snapshot iso-
lation. To make matters worse, MySQL’s “repeatable
read” isn’t actually repeatable read either—it’s mono-
tonic atomic view, a weaker isolation level.

Moreover, the documentation seems to imply that
TiDB “repeatable read” might be different from both
MySQL’s “repeatable read” and snapshot isolation:

The consistency of MySQL Repeatable
Read isolation level is weaker than both
the snapshot isolation level and TiDB Re-
peatable Read isolation level.

Monotonic atomic view is strictly weaker than snap-
shot isolation: it allows anomalies (predicate-many-
preceders, lost updates, and read skew), which snap-
shot isolation prohibits. But how does TiDB’s “repeat-
able read” differ from snapshot isolation? The docu-
mentation goes on to say it doesn’t:

According to the standard described in the
A Critique of ANSI SQL Isolation Levels
paper, TiDB implements the snapshot iso-
lation level, and it does not allow phantom
reads but allows write skews.

However, that paper, by Berenson et al states that
snapshot isolation only disallows the anomaly defi-
nition of the ANSI SQL standard’s phantoms: phe-
nomenon A3. The preventative definition of phantoms,
P3, is “sometimes possible” under snapshot isolation.
In discussion with Jepsen, PingCAP’s engineers clari-
fied that TiDB does, in fact, allow some phantoms.

There are a few other interesting divergences from
standard SQL—most notably, although TiDB supports
foreign key constraints, the database does not actually
enforce them.

2 Test Design

Jepsen is a distributed systems testing toolkit, and
has found safety and liveness issues in dozens of
databases. With Jepsen, one runs a real distributed
system, rather than relying on static analysis or model-
checking. Jepsen connects to that system via a client
library, performs somework (optionally while injecting
faults into the system), and finally verifies that the his-
tory of all client operations satisfies some invariants.

We tested TiDB 2.1.7, 2.1.8, 3.0.0-beta.1, 3.0.0-beta.1-
40, and 3.0.0-rc.2. Our tests ran on a five-node De-
bian Stretch cluster, with PD, TiKV, and TiDB on each
node. We used a replication factor of 3 for each TiKV
region. To stress cross-region transactions, we used
TiDB’s split-table option to ensure each table had
a distinct region, and executed queries across multiple
tables.

For faults, we paused (using SIGSTOP), forcibly killed
(using SIGKILL), and isolated (using iptables) indi-
vidual nodes, as well as introducing network partitions
dividing the cluster in two, or into overlapping rings of
3/5 nodes each, such that every node observed a ma-
jority, but no two nodes agreed on what that majority
was. We used special TiDB schedules to shuffle leaders,
shuffle regions, and merge regions together. We tested
using exponentially distributed clock skews up to 232
seconds, as well as strobing the clock up and down ev-
ery few milliseconds. We also used libfaketime to
simulate some node clocks, both CLOCK_REALTIME and
CLOCK_MONOTONIC, running up to 5x faster than oth-
ers.

PingCAP had written their own Jepsen tests, which
we reviewed and expanded upon during our collabo-
ration. The resulting test suite encompasses several
workloads from previous Jepsen analyses, as well as
some new ones.
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2.1 Set

In the set test, we insert unique integers as distinct
rows into a table, and concurrently read the entire
table to see what integers are present. We verify
that every successfully inserted element (either those
whose inserts were acknowledged, or which appeared
in reads) are present in subsequent reads. We con-
sider an inserted element lost if there exists some time
after which every read fails to observe that element.
A stricter variant of this test ensures that every el-
ement is immediately visible, as opposed to allowing
stale reads.

2.2 Bank

In the bank test, we create a pool of simulated bank ac-
counts, and transfer money between them using trans-
actions which read two randomly selected accounts,
subtract and increment their balances accordingly,
and write the new account values back. Under snap-
shot isolation, the total of all accounts should be con-
stant over time. We read the state of all accounts con-
currently, and check for changes in the total, which
suggests read skew or other snapshot isolation anoma-
lies.

2.3 Long Fork

Long fork is an anomaly prohibited by snapshot isola-
tion, but allowed by the slightly weaker model parallel
snapshot isolation. In a long fork, updates to indepen-
dent keys become visible to reads in a way that isn’t
consistent with a total order of those updates. For in-
stance:

T1: w(x, 1)
T2: w(y, 1)
T3: r(x, 1), r(y, nil)
T4: r(x, nil), r(y, 1)

Under snapshot isolation, T1 and T2 may execute
concurrently, because their write sets don’t intersect.
However, every transaction should observe a snapshot
consistent with applying those writes in some order.
Here, T3 implies T1 happened before T2, but T4 im-
plies the opposite. We run an n-key generalization of
these transactions continuously in our long fork test,
and look for cases where some keys are updated out of
order.

2.4 Register

TiDB promises snapshot isolation, but stores individ-
ual keys in Raft, which suggests that operations on
a single key may be linearizable. We perform reads,
writes, and compare-and-set operations on a set of reg-
isters, and verify each register independently using
the Knossos linearizability checker.

2.5 Sequential

Sequential consistency requires that the orders of oper-
ations observed by each individual client be consistent
with one another. We evaluate sequential consistency
by having one process perform two transactions, each
inserting a different key, and, concurrently, reading
those keys in the reverse order using a second process:

T1: w(x, 1)
T2: w(y, 1)
T3: r(y)
T4: r(x)

A serializable system could allow x and y to be inserted
in either order, and likewise, could evaluate the reads
at any point in time: reads could see neither, only x,
only y, or both. A sequentially consistent system, how-
ever, can never observe y alone, since the same process
inserted x prior to y.

2.6 Monotonic & Append

Some of Jepsen’s checkers (e.g. linearizability) allow
the verification of arbitrary histories. However, our
usual tests for transactional systems rely on a care-
fully selected “artisanal” set of transactions with hand-
proven invariants, as in the bank, long-fork, and se-
quential tests.

For TiDB, we developed a new, more general approach
for verifying transactional isolation, based on cycle de-
tection.1 The monotonic test finds dependency cycles
over increment-only registers, the txn-cycle test finds
write-read dependency cycles over read-write registers,
and the append test uses appends of unique elements
to lists. We include realtime dependencies (e.g. T1 com-
pletes before T2 begins) in our analysis. TiDB doesn’t
formally promise realtime guarantees, but our results
hold both with and without those constraints.

1The details of our cycle detection strategy are somewhat involved, and will be published in an upcoming paper.
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3 Results

3.1 Crashes on Startup

When their connection to Placement Driver is lost,
TiKV nodes try indefinitely to reconnect, and come
back online once PD is available again. However, a
recently started TiKV node is special: it will only try
to connect a finite number of times, and if those at-
tempts fail, the process crashes.2 In 2.1.7 through
3.0.0-beta.1, restarting every process could (depending
on the state of KV & PD processes, and the network)
result in a completely unusable cluster. We found prob-
lems like this in various components—for instance, an-
other crash in TiKV, one in TiDB when TiKV’s regions
aren’t yet available, and another in TiDB when binlog
pump instances aren’t registered.

This is not a severe problem—many databases share
this behavior. However, it makes the startup pro-
cess more fragile, and could potentially cause issues
in production. For instance, if an init system automat-
ically restarts TiKV, it may fail several times in a row,
causing the init system to declare the service broken,
and give up altogether. Operators attempting to re-
cover from an outage could also restart processes in the
wrong order, only to discover the daemon they had just
restarted was not, in fact, running. In general, TiDB
restarts must be carefully sequenced.

TiDB has patches for #4500 and #10495 in 3.0.0-rc.2.
Comments in #10240 suggest it may be fixed later.
PingCAP says the crash observed in #10470 is work-
ing as designed, and will not be fixed. We encouraged
PingCAP to develop a standardized policy for crashes
vs retries on transient failures.

3.2 Created Tables May Not Exist

As with many of the databases Jepsen has eval-
uated, changes to schemata in TiDB might not
take effect immediately. For instance, TiDB 3.0.0-
beta.1 could successfully execute a create table
cats ... query, then (occasionally) throw table
cats doesn't exist if one tries to insert a record
into cats.

This is bug 10410, which PingCAP thinks is linked to
a race condition shortly after cluster bootstrap. Ping-
CAP reports this issue is fixed in 3.0.0-rc.2.

3.3 Under-Replicated Regions

TiDB 3.0.0-rc.2, by design, starts up with a region with
only a single replica, regardless of the configured tar-
get number of replicas. PD then gradually adds addi-
tional replicas until the target replica count is reached.
In addition, any regions which are split from this ini-
tial region also start with the same number of replicas
as the target region, until PD can expand them to new
nodes.

This is not a problem in itself, but it does lead to an
awkward possibility: in the early stages of a TiDB clus-
ter, data may be acknowledged, but stored only on a
single node, when the user expected that data to be
replicated to multiple nodes. A single-node failure dur-
ing that period could destroy acknowledged writes, or
render the cluster partly, or totally, unusable. In our
tests, default-sized clusters reached a fully-replicated
state in 1-2 minutes; regions capped at 500 elements
might fail to converge after 80+ minutes. When a net-
work partition occurs under those conditions, it could
result in a partial or total outage, because some re-
gions, lacking a full set of 3 replicas, cannot tolerate
the loss of any single node.

Conferring with the PingCAP team, we believe this
issue only affects new clusters; once TiDB has stabi-
lized, split regions should inherit their parents’ replica
counts. During topology changes (e.g. in response to a
dead node), TiDB adds new nodes before removing old
ones, which should prevent scenarios where the num-
ber of replicas falls below the configured target. In ad-
dition, waiting for full replication before starting TiDB
(or any other service which uses TiKV), can dramati-
cally speed up convergence. TiDB has a patch adding
an initialized flag to the upcoming 3.0.0-rc.3 release;
deployment systems could use this flag to ensure full
region replication as a part of cluster setup.

3.4 Read Skew & Lost Updates

Under normal operation, without faults, TiDB 2.1.7,
2.1.8, and 3.0.0-beta.1 exhibited frequent cases of read
skew (G-single, A5A) and other anti-dependency cycles
(G2, G2-item), due to a retrymechanismwhich ignored
transactional boundaries. Writes could also appear to
take place in mutually incompatible orders between
transactions. Updates could be lost altogether.

To begin, consider this trio of transactions from an ap-
pend test. We write r(34, [2 1]) to denote the value

2Technically, the process logs a fatal error, prints a stacktrace, and exits. PingCAP considers this a normal exit. We use “crash” to refer
to any early termination.
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of key 34 was read as the vector [2 1], and append(36,
5) to denote appending 5 to the current value of key
36.

T1: r(34, [2 1]), append(36, 5), append(34,
4)
T2: append(34, 5)
T3: r(34, [2 1 5 4])

Because T1 did not see T2’s append of 5 to 34, we know
T1 must have executed before T2. We call this an anti-
dependency, because T1 read state which T2 overwrote.
However, we can infer from T3’s read of key 34 that
the append of 4 must have executed after the append
of 5, which means that T2 must have executed before

T1. We call this a write dependency, because T2 wrote
data which T1 later modified.3

Adya, Liskov, andO’Neil call this anomaly (G2) an anti-
dependency cycle, because it includes at least one anti-
dependency edge. Because there’s exactly one anti-
dependency, it is also Adya’s G-single, which Beren-
son calls A5A, or read skew. Because these reads and
writes are of individual records, as opposed to predi-
cates, these dependencies are item anti-dependencies,
and this history is also G2-item—an anomaly prohib-
ited by repeatable read. Intuitively, T1 both observes,
but also fails to observe, T2. In fact, it does both on a
single record!

Figure 1:

To make this concrete, consider this run of Jepsen’s
bank workload on a healthy cluster: transactions read-
ing multiple accounts could observe part, but not all, of
a concurrent transfer transaction. If transfer T1 moves
$5 from account A to account B, a read could observe
the decrement on A but not the increment on B, or vice
versa. Consequently, the total of all accounts fluctu-
ates over time. Moreover, transfer transactions could
commit values based on skewed reads back into the
database, permanently corrupting logical state.

In this plot, we show the total of all accounts over time,
as observed by read-only transactions. Colors indicate
which node (e.g. “n1”) each query was executed on. Un-
der snapshot isolation, this total should remain con-

stant. However, the total drifts rapidly, doubling in
under thirty seconds.

In addition, we observed numerous incompatible or-
ders. Consider these three transactions involving key 7,
from the same test run as our first anti-dependency ex-
ample. We have elided some operations on other keys
for clarity:

T1: ... r(7, [1 2 3 4])
T2: append(7, 7), r(7, [1 2 3 7])
T3: r(7, [1 2 3 4 7])

Even if transactions were not required to be atomic,
this is not consistent with a single order of operations
on key 7! We appended both 4 and 7 to key 7, but one

3The same test also contains numerous anti-dependency cycles involving read dependencies (T2 reads state which T1 wrote), instead of
write dependencies.

4This is, in fact, the technical term.
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transaction observes the list [1 2 3 4], and one ob-
serves [1 2 3 7]. Then, a mystery occurs4, and the
append of 7 slots in after 4.5

T1 and T2 appear to observe separate copies of key 7. If
there were separate copies, did TiDB merge them to-
gether? Some databases, like Cassandra, might pick
one copy (say, [1 2 3 7]) and discard the other, on
the basis of e.g. a last-modified timestamp—but this
cannot have happened in TiDB, because we observe
both 4 and 7 in a subsequent read. Did TiDB merge
the list structures? Doubtful, because we (anticipat-
ing this possibility) chose to store these list values as
strings, which are opaque to TiDB. It seemsmore likely
that instead of merging states, TiDB is merging the ap-
pend operations.

Indeed, this is exactly what happens. When one trans-
action conflicts with another, TiDB tries to hide the
conflict from the user by automatically re-trying the
transaction again. Here, T2’s append of 7 likely con-
flicted with the concurrent append of 4, and was forced
to abort and retry. Let that retry be T2r:

T1: ... r(7, [1 2 3 4])
T2: append(7, 7), r(7, [1 2 3 7]), abort
T2r: append(7, 7), r(7, [1 2 3 4 7])
T3: r(7, [1 2 3 4 7])

However, we did not observe [1 2 3 4 7] from T2’s
read! This is a second problem in TiDB’s retry mech-
anism: it returns the reads from the aborted transac-
tion T2, then retries T2’s writes, without bothering to
return the new values that would have been observed
in T2r.

T1: ... r(7, [1 2 3 4])
T2: append(7, 7), r(7, [1 2 3 7]), abort
T2r: append(7, 7)
T3: r(7, [1 2 3 4 7])

Even if retried transactions did return their second
reads, TiDB would still exhibit lost updates. Consider
the following history, from a set CaS test. In this vari-
ant of the set test, operations are transactions on a sin-
gle key, which stores a set of numbers in a text field.
We write 2 :invoke :read nil to signify that pro-
cess 2 began a transaction to read the current state of
that key. 2 :ok :read (0 1 2 3 4 5) means that
process 2 completed its read transaction successfully,
and found the value to be the list (0 1 2 3 4 5).

2 :ok :read (0 1 2 3 4)

2 :invoke :read nil
1 :ok :add 5
4 :invoke :read nil
4 :ok :read (0 1 2 3 4 5)
1 :invoke :add 7
2 :ok :read (0 1 2 3 4 5)
1 :ok :add 7
3 :invoke :read nil
3 :ok :read (0 1 2 3 4 5 7)
0 :ok :add 6
0 :invoke :add 8
0 :ok :add 8
4 :invoke :read nil
4 :ok :read (0 1 2 3 4 6 8)
3 :invoke :read nil
3 :ok :read (0 1 2 3 4 6 8)

Process 1 adds element 5 to the set by reading its
current value (presumably, (1 2 3 4)), then writing
back (1 2 3 4 5). A concurrent add of 6, however,
failed to observe process 1’s write, and consequently
destroyed it. It’s possible for multiple “chains” of val-
ues to exist concurrently, as transactions squabble to
be the last writer. Reads can observe updates popping
into and out of existence repeatedly, over the course of
multiple seconds. In this 30-second test with ~12 up-
dates per second, TiDB lost 64 out of 378 insertions.

TiDB’s automatic transaction retry mechanism was
documented, but poorly: TiDB claimed repeatedly to
support snapshot isolation, while providing essentially
none of snapshot isolation’s guarantees. The docu-
mentation for auto-retries was titled “Description of
optimistic transactions”, and it simply said that the
automatic-retry mechanism “cannot guarantee the fi-
nal result is as expected”—but did not describe how.
We suspect users may be unaware of how badly broken
this behavior is.

In 3.0.0-rc.2, automatic retries are disabled by default,
and this anomaly does not occur unless users re-enable
them.

3.5 Auto-Retry Redux

The documentation stated:

To disable the automatic retry of
explicit transactions, configure the
tidb_disable_txn_auto_retry global
variable…

5One could argue that this anomaly is a write cycle—Adya’s G0. Let T1 = append(x, 1), r(x, [1]), and T2 = append(x, 2), r(x,
[2]). Since T1 was the first to write to x, it must have written before T2. Likewise, since T2 was also the first to write to x, it must have
written before T1. The astute reader may have noticed a small problem here: we cannot infer the version order for x, which we use to re-
construct the serialization graph for a history, because no version order exists. This so deeply violates the assumptions in Adya’s formalism
that we aren’t sure what to call it.
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However, tidb_disable_txn_auto_retry only dis-
ables one of TiDB’s auto-retry mechanisms. A sec-
ond mechanism, configured with tidb_retry_limit,
comes into play when TiDB loses its connection to
Placement Driver, e.g. due to a network partition, pro-
cess pause, crash, or simply because the query was a

bit slow.

For instance, in this bank test, the value of all bank
accounts abruptly fluctuated, then rose from $100 to
$136, shortly after recovering from a crash of Place-
ment Driver.

All the same anomalies are present: read skew, in-
compatible orders, lost updates—they’re simply much
less frequent. Even without process crashes, we’ve ob-
served occasional instances of read skew in healthy
clusters.

With tidb_retry_limit = 0, TiDB 2.1.7 through
3.0.0-beta.1-40 passes tests for snapshot isolation, un-
der partitions, process pauses, crashes, and clock skew.
In 3.0.0-rc.2, tidb_retry_limit still defaults to 10,
but tidb_disable_auto_retry defaults to on, and ap-
plies to both retry mechanisms. 3.0.0-rc.2 therefore
passes with default settings.

3.6 Select … For Update

Curiously enough, Vadim Tkachenko pointed out that
TiDB allowed read skew in February 2017, and when
Jepsen discussed their initial read skew histories with
the PingCAP team, PingCAP’s response was the same:
TiDB only offers snapshot isolation, and users should
use select ... for update to prevent instances of
write skew. Indeed, PingCAP’s initial Jepsen tests
used select for update as well. Should users do the
same?

The answer, in this case, is no: TiDB, as a snapshot
isolated system, is supposed to prevent read skew, and

users should not need to resort to select ... for
update to prevent this anomaly. Instead, use select
... for update to prevent write skew: where trans-
actions read intersecting data, but their write sets are
disjoint. Using select ... for update on a read is
somewhat like promoting that read to a write, allow-
ing the conflict detector to check for write skew on that
query. Of course, write skew may still occur on rows
which don’t use select ... for update—it is up to
the application developer to decide when and how to
use it.

Even with automatic retries enabled, using select
... for update with every read dramatically re-
duced the probability of transactional anomalies. For
starters, it forces two transactions to conflict if any of
the keys they read, or write, intersect. But in addition,
it disables automatic retry of that specific transaction.
It also, in our tests, dramatically lowered transaction
throughput, which further reduces the probability of
observing errors in any given test.

However, both with and without automatic retries, we
still observed anti-dependency cycles using select
... for update on all reads, with versions 2.1.8,
3.0.0-beta.1, and 3.0.0-beta.1-40. Consider this history
from an append test:

T1: r(3, nil) r(4, nil) append(4, 2)
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T2: r(3, nil) r(4, nil) append(3, 1)

Since T1 observes the initial state of key 3, it must pre-
cede T2. Since T2 observes the initial state of key 4, it
must precede T1: a contradiction! Since T1 and T2’s
read sets intersect, and their writes are disjoint, this
history is also an example of write skew.

Every G2 anomaly we’ve observed with select ...
for update involves the first write to some key. The
cause? TiDB’s locking mechanism can’t lock keys
which haven’t been created yet, which allows write
skew to manifest!

Whether this is actually illegal is somewhat up for
debate. PingCAP’s engineers have said repeatedly
that using select ... for update prevents write
skew, which definitely contradicts this behavior. How-
ever, the PostgreSQL and MySQL documentation de-
scribe select ... for update in terms of locking
behavior on specific rows, rather than preventing
anomalies. PingCAP’s official documentation did not
describe what select ... for update should have
done. That documentation now states that locks are
not acquired on rows that “do not exist in the result
sets” for a given query.

№ Summary Event Required Fixed in

10410 Created tables may not exist Create table 3.0.0-rc.2
4500 TiKV crash on startup PD unavailable 3.0.0-rc.2
10495 TiKV crash on startup No PD leader 3.0.0-rc.2
10470 TiDB crash on startup KV region not ready Won’t fix
10657 New clusters may not fully replicate records New cluster Unresolved
10444 G2 & write skew despite select … for update None Documented
10075 Auto-retry read skew, lost updates None 3.0.0-rc.2
10076 Less frequent auto-retry read skew, lost updates None 3.0.0-rc.2

4 Discussion

Based on our cycle detector results, we believe TiDB’s
default isolation level (in versions 2.1.7, 2.1.8, 3.0.0-
beta.1, and 3.0.0-beta.1-40) to be something like read
committed, in that it prohibits dirty reads (G1a), but
weaker than read uncommitted, in that it can apply
operations from a transaction multiple times, which
undermines the assumption of a total version order for
each key. We have opted, conservatively, not to infer
dependencies for contradictory orders. Under those
assumptions, we have not observed write cycles (G0),
dirty reads (G1a), intermediate reads (G1b), or cyclic
information flow (G1c), but we emphasize that this de-
cision is debatable. Even with these conservative as-
sumptions, TiDB’s default settings allow P4 (lost up-
dates), and G-single (read skew), both of which are il-
legal under snapshot isolation.

With tidb_retry_limit = 0, and by default in 3.0.0-
rc.2, TiDB appears to provide snapshot isolation,
through network partitions, process crashes, and
pauses. Note that select ... for update does not
prevent read skew, or other kinds of G2 anomalies, dur-
ing the first write to a particular key.

PingCAP updated the TiDB transaction documenta-
tion to note that TiDB could lose updates by default,
and to identify the correct setting (tidb_retry_limit)

used to disable both auto-retry features. As of June 11,
2019, the docs stated that retries were disabled by de-
fault, and that tidb_disable_txn_auto_retry con-
trolled both retry mechanisms. These statements will
likely apply to the upcoming release of 3.0.0, but do not
reflect the behavior of current GA releases.

The transaction documentation now notes that SI al-
lows some classes of phantoms (P3), and prohibits
others (A3). In addition, the docs for DML now ex-
plain that select ... for update does not lock keys
which do not exist as of the transaction’s start time.

Jepsen is not a good measure of database performance;
we evaluate pathological workloads with fixed concur-
rency, rather than realistic workloads with fixed re-
quest rates. We also note that Jepsen takes an experi-
mental approach to safety verification: we can prove
the presence of bugs, but not their absence. While
we make extensive efforts to find problems, we cannot
prove the correctness of any distributed system.

4.1 Recommendations

Users should be aware that TiDB 2.1.7, 2.1.8, 3.0.0-
beta.1, and 3.0.0-beta.1-40, in their default configura-
tion, do not provide snapshot isolation. TiDB exhibits
stale reads, read skew, lost updates, and incompati-
ble orders of updates due to two separate, improperly
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designed, transactional retry mechanisms. We recom-
mend that users upgrade to 3.0.0 once it stabilizes. In
the meantime, users can prevent these anomalies by
disabling retry mechanisms.

PingCAP has recommended using select ... for
update to prevent write skew, but users may observe
write skew even with select ... for update, while
a record is first being created. Users can work around
this issue by ensuring a record exists before transac-
tions where write skew would create problems.

TiDB processes are fragile during initialization; they
may start, run for a short while, and crash after a few
minutes if their dependencies are unavailable, slow,
or otherwise degraded. Users may consider wrapping
PD, TiKV, and TiDB with a process supervisor which
automatically restarts them. Be aware that service
managers, like systemd, may disable a service when
it restarts too often.

Be advised that new TiDB clusters will accept writes
without fully replicating them, which could lead to the
loss of committed data if a single node fails. Users
should poll the PD API to ensure that all regions have
the desired replica count before writing data. Avoid
starting TiDB, or any other process that writes data,
until TiKV’s regions are fully replicated.

TiDB uses leader leases based on CLOCK_MONOTONIC to
ensure that PD timestamps are monotonically increas-
ing. PingCAP and Jepsen believe this could lead to
consistency anomalies when monotonic clocks are not
well behaved. However, we don’t have experimental ev-
idence to confirm this hypothesis. We encourage users
to instrument their clock rates and alert on divergence,
just in case.

4.2 Future Work

We recommended that PingCAP disable auto-retry
mechanisms by default, and they did so in 3.0.0-rc.2.
There are safe ways to do transactional auto-retry,
which PingCAP may explore in the future, but this is
an easy fix which offers users safety right away. We
anticipate that 3.0.0, like 3.0.0-rc.2, will offer snap-
shot isolation by default. Some issues we found with
crashes on TiKV startup should be fixed in 3.0.0 as
well; others are still under consideration.

The absence of observed transactional anomalies dur-
ing clock skew, including running CLOCK_MONOTONIC
faster or slower than realtime on various nodes, is
disconcerting: we believe this should lead to anoma-
lies. One possible cause of this behavior is that our
libfaketime shims don’t intercept all timing calls
that PD makes—for instance, log messages are writ-
ten with correct, rather than accelerated, timestamps.
Our tests may also be insufficiently rigorous to detect
transient consistency violations, or our randomized
schedulesmay not (frequently) create conditions where
those anomalies could occur. We’d like to explore this
more carefully in the future.

We have not evaluated filesystem or disk faults with
TiDB, and cannot speak to crash recovery. Nor have
we tested dynamic membership changes. Both might
be fruitful avenues of investigation for future research.

This work was funded by PingCAP, and conducted in
accordance with the Jepsen ethics policy. Our thanks
to the PingCAP team for their assistance with this
analysis—especially Shen Taining, Tang Liu, Morgan
Tocker, Shuaipeng Yu, Li Shen, Menglong Huang,
Huang Dongxu, Yin Chengwen, and Kevin Xu. We’re
grateful to Tim Kordas and Keyur Govande for their
technical assistance with libfaketime. Finally, we wish
to thank Kit Patella for her supporting work on the
Jepsen library, and to Peter Alvaro for theoretical guid-
ance.
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