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TigerBeetle is a distributed OLTP database oriented towards financial transactions. We tested TigerBeetle
0.16.11 through 0.16.30. We discovered seven client and server crashes, including a segfault on client close and
several panics during server upgrades. Single-node failures could cause significantly elevated latencies for the
duration of the fault, and requests were intentionally retried forever, which complicates error handling. We
found only two safety issues: missing results for queries with multiple predicates, and a minor issue with a
debugging API returning incorrect timestamps. TigerBeetle offered exceptional resilience to disk corruption,
including damage to every replica’s files. However, it lacked a way to handle the total loss of a node’s data. As
of version 0.16.30, TigerBeetle appeared to meet its promise of Strong Serializability. As of 0.16.45, TigerBeetle
had addressed every issue we found, with the exception of indefinite retries. TigerBeetle has written a compan-
ion blog post to this work. This report was funded by TigerBeetle, Inc., and conducted in accordance with the
Jepsen ethics policy.

1 Background

TigerBeetle is an Online Transactional Processing
(OLTP) database built for double-entry accounting
with a strong emphasis on safety and speed. It builds
on the Viewstamped Replication (VR) consensus pro-
tocol to offer Strong Serializable consistency. Unlike
general-purpose databases, TigerBeetle stores only ac-
counts and transfers between them. This data model
is well-suited for financial transactions, inventory,
ticketing, or utility metering. To store other kinds
of information, users typically pair TigerBeetle with
other databases, linking them through user-defined
identifiers.

TigerBeetle optimizes for high-contention and high-
throughput workloads, such as central bank switches
or brokerages. A central bank exchange might have
only a half-dozen to a few hundred account records—
one for each partner bank—and process hundreds of
millions of transactions per day between 647 banks.
A large brokerage, after the trading day closes, might
need to settle the entire day’s trades as quickly as pos-
sible.1 These trades also tend to be concentrated on
a small number of popular stocks. Under high con-
tention, per-object concurrency control mechanisms
can be the limiting factor in throughput. Instead,
TigerBeetle funnels all writes through a single core
on the primary VR node. This limits throughput to
whatever a single node can execute: TigerBeetle is
firmly scale-up, not scale-out. To make that single
node as fast as possible, TigerBeetle makes extensive
use of batching, IO parallelization, a fixed schema,

and hardware-friendly optimizations—such as fixed-
size, cache-aligned data structures.

Refreshingly, TigerBeetle stresses fault tolerance in
their marketing and documentation. They offer ex-
plicit models for memory, process, clock, storage, and
network faults. ECC RAM is assumed to be correct.
Processes may pause or crash. Clocks may jump for-
ward and backward in time. Disks are assumed to not
only fail completely, but to tear individual writes or
corrupt data. Networks may delay, drop, duplicate,
misdirect, and corrupt messages. To mitigate these
faults, TigerBeetle combines Viewstamped Replica-
tion with techniques from Protocol-Aware Recovery,
uses extensive checksums stored separately from data
blocks, and for critical data, writes and reads multiple
copies. TigerBeetle also makes extensive use of run-
time correctness assertions to identify and limit the
damage from faults and bugs alike.

Unlike most distributed systems, TigerBeetle claims
to keep running without data loss if even a single
replica retains a copy of a record:

A record would need to get corrupted on all
replicas in a cluster to get lost, and even in
that case the system would safely halt.

To test safety under faults, TigerBeetle employs de-
terministic simulation testing: tests which perform
reproducible, pseudo-random operations against the
system and ensure that some property holds.2 The
Viewstamped Operation Replicator (VOPR) test sim-
ulates an entire TigerBeetle cluster, including clock,

1To give some idea of the rates involved—India’s Unified Payments Interface processes roughly 16 billion transfers per month, which
works out to about 6,000 per second, on average. Clear Street, a brokerage in New York, indicates that they process on the order
of 30,000 debit-credit transfers per second after the market closes.

2Deterministic simulation testing is essentially property-based testing with techniques to turn non-deterministic systems into
deterministic ones. The clock, disk state, scheduler, network delivery, external services, and so on are controlled to ensure
reproducibility. For more on this approach, you might start with PULSE, Simulant, FoundationDB, and Antithesis.

1

https://tigerbeetle.com
https://tigerbeetle.com/blog/2025-06-06-fuzzer-blind-spots-meet-jepsen/
https://tigerbeetle.com/blog/2025-06-06-fuzzer-blind-spots-meet-jepsen/
https://jepsen.io/analyses/ethics
https://tigerbeetle.com/blog/2024-07-23-rediscovering-transaction-processing-from-history-and-first-principles
https://tigerbeetle.com/blog/2024-07-23-rediscovering-transaction-processing-from-history-and-first-principles
https://pmg.csail.mit.edu/papers/vr-revisited.pdf
https://jepsen.io/consistency/models/strong-serializable
https://web.archive.org/web/20250126010247/https://docs.tigerbeetle.com/about/oltp#business-transactions-dont-shard-well
https://web.archive.org/web/20250126010247/https://docs.tigerbeetle.com/about/oltp#business-transactions-dont-shard-well
https://www.bcb.gov.br/en/statistics/graphicdetail/graficospix/PixTransactionsAmount
https://www.bcb.gov.br/en/statistics/graphicdetail/graficospix/PixTransactionsAmount
https://www.npci.org.in/what-we-do/upi/product-statistics
https://web.archive.org/web/20250126010247/https://docs.tigerbeetle.com/about/performance#single-core-by-design
https://web.archive.org/web/20250126010247/https://docs.tigerbeetle.com/about/performance#single-core-by-design
https://web.archive.org/web/20250126010247/https://docs.tigerbeetle.com/about/safety
https://web.archive.org/web/20250126010247/https://docs.tigerbeetle.com/about/safety
https://www.usenix.org/system/files/conference/fast18/fast18-alagappan.pdf
https://web.archive.org/web/20241213103525/docs.tigerbeetle.com/about/safety#durability
https://web.archive.org/web/20241213103525/docs.tigerbeetle.com/about/safety#durability
https://notes.eatonphil.com/2024-08-20-deterministic-simulation-testing.html
https://notes.eatonphil.com/2024-08-20-deterministic-simulation-testing.html
https://web.archive.org/web/20250126010247/https://docs.tigerbeetle.com/about/vopr/
https://www.npci.org.in/what-we-do/upi/product-statistics
https://www.clearstreet.io/
https://dl.acm.org/doi/pdf/10.1145/3597503.3639581
https://smallbone.se/papers/finding-race-conditions.pdf
https://www.youtube.com/watch?v=N5HyVUPuU0E
https://www.foundationdb.org/files/fdb-paper.pdf
https://antithesis.com/solutions/problems_we_solve/


disk, and network interfaces. It simulates clock skew,
corrupts reads and writes, loses and reorders network
messages, and so on. There are other simulation tests
which stress specific subsystems, as well as a variety
of more traditional integration and unit tests.
TigerBeetle also offers a noteworthy approach to up-
grades. Each TigerBeetle binary includes the code
not just for that particular version, but several pre-
vious versions. For example, the 0.16.21 binary can
run 0.16.17, 0.16.18, and so on through 0.16.21. To up-
grade, one simply replaces the binary on disk. Tiger-
Beetle loads the new binary, but continues running
with the current version. It then coordinates across
the cluster to smoothly roll out each successive version,
until all nodes are running the latest version avail-
able. This approach does not require operators to care-
fully sequence the upgrade process. Instead, upgrades
are performed automatically, and coupled to the repli-
cated state machine. This also allows TigerBeetle to
ensure that an operation which commits on version
𝑥 will never commit on any other version—guarding
against state divergence.

1.1 Time

TigerBeetle defines an explicit model of time. View-
stamped Replication forms a totally ordered sequence
of state transitions, and its view and op numbers can
be used as a totally ordered logical clock. Financial
systems usually prefer wall clocks, so most TigerBee-
tle timestamps are in “physical time,” which, like Hy-
brid Logical Clocks, approximate POSIX time with
stronger ordering guarantees. Specifically, TigerBee-
tle leaders collect POSIX timestamps from all repli-
cas3 and try to find a time which falls within a reason-
able margin of error across a quorum of nodes.4 Those
timestamps are incorporated into the VR-replicated
state machine, and constrained to be strictly mono-
tonic. When no quorum of clocks falls within a twenty-
second window for longer than sixty seconds, the clus-
ter refuses requests until clocks come back in sync.
As of October 2024, TigerBeetle’s documentation de-
scribed TigerBeetle timestamps as “nanoseconds since
UNIX epoch”. This is not quite true: POSIX time
is presently twenty-seven seconds less than the ac-
tual number of seconds since the epoch. During leap
seconds or other negative time adjustments, Tiger-
Beetle’s clock slows to a crawl until values from
CLOCK_REALTIME catch up.

1.2 Data Model

TigerBeetle’s data model is specifically intended for

double-entry bookkeeping. It has no way to represent
arbitrary rows, objects, graphs, blobs, and so on.5 In-
stead TigerBeetle stores two types of data: accounts,
and transfers between them. All fields are fixed-size,6
and numbers are generally unsigned integers. All val-
ues are, with limited exceptions, immutable.

An account represents an entity which sends and re-
ceives something. For example, a “Gross Revenues”
account might accrue dollars, “Meadow Lake Wind
Farm” might generate kilowatt-hours of electricity,
and “Beyoncé” would obviously hold an ever-growing
number of Grammy awards. Accounts are uniquely
identified by a user-defined 128-bit id, a ledger which
determines which accounts can interact with each
other, a bitfield of flags controlling various behav-
iors, a creation timestamp, a user-defined code, and
three custom fields of varying sizes: user_data_32,
user_data_64, and user_data_128. There are also
four derived fields which represent the current sum of
transfers into (credits) and out of (debits) the account:
debits_pending, debits_posted, credits_pending,
and credits_posted.

A transfer is an immutable record which represents
an integer quantity moving from one account to an-
other. Like accounts, transfers have a unique, user-
specified, 128-bit id, a code, a ledger, a bitfield
of flags, and three custom fields: user_data_32,
user_data_64, and user_data_128. Transfers also in-
clude the debit_account_id and credit_account_id
of the two accounts involved, and the integer amount
transferred between them.

A single-phase transfer takes effect, or posts, immedi-
ately. A transfer can also be executed in two phases,
represented by two transfer records. The first phase,
pending, reserves capacity in the debit and credit ac-
count for the given amount. The second phase posts
the pending transfer, transferring at most the pending
amount. Pending transfers can be explicitly voided,
which cancels them, or automatically expire, which
is controlled by a timeout field. Posting and voiding
transfers use a flag and a pending_id field to indicate
which pending transfer they resolve. Pending trans-
fers resolve at most once.

A special kind of transfer can close an account, pre-
venting it from participating in later transfers. Clos-
ing transfers are always pending. Account closures
can be “un-done” by voiding the closing transfer.

Accounts are immutable with five exceptions: a
closed flag, which is derived from closing and re-
opening transfers, and four balance fields, which are
derived from the sum of pending and posted transfers.

3Timestamps are derived from CLOCK_REALTIME, which is presumably synchronized via NTP, PTP, etc. The primary uses
CLOCK_BOOTTIME to estimate and compensate for network latency in clock messages.

4Many consensus systems use a majority of nodes as a quorum. As Heidi Howard showed in 2016, Paxos can use different quorums
for its leader election and replication phases; these two quorums must intersect, but one may be less than a majority. TigerBeetle
applies this “flexible quorum” approach to Viewstamped Replication. It requires only half, not a majority, of clocks to agree.

5TigerBeetle’s core is designed to replicate arbitrary state machines, so this may change in the future.
6This representation is unusual: most databases allow user-defined schemas, a variety of types, and variable-size data. However,
TigerBeetle’s domain is well-understood: the broad shape of financial record-keeping has not changed in centuries. Moreover,
a rigid, fixed-size schema provides significant performance advantages: efficient encoding and decoding, zero-copy transfer of
structures between network and disk, prefetcher/branch prediction friendliness, cache line alignment, and so on.
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Transfers are always immutable. One alters or un-
does a transfer by creating a new, compensating trans-
fer.

1.3 Operations

TigerBeetle clients make requests to update or query
database state. Each request represents a single kind
of logical operation, like creating accounts or query-
ing transfers. Requests and their corresponding re-
sponses usually involve a batch of up to 8190 events,
all of the same type. For example, a create-transfers
request includes a batch of transfers to create, and
logically7 returns a batch of results, one per transfer.
Read operations generally take a list of IDs, or a query
predicate, and return a batch of matching records.
From a database perspective, each TigerBeetle re-
quest is a single transaction: an ordered group of
micro-operations which execute atomically. Events
within a request are executed in order. Each event
observes a unique, strictly increasing timestamp.8
There are no interactive transactions, mixed read-
write transactions, or indeed any kind of multi-
request transactions.
TigerBeetle’s home page promises Strong Serializabil-
ity, and the documentation is consistent with this
promise. Requests execute at most once, and events
within a request “do not interleave with events from
other requests.” TigerBeetle also promises several ses-
sion safety properties: a session “reads its own writes”
and “observes writes in the order that they occur on
the cluster.” These are guaranteed by Strong Session
Serializability, which in turn is implied by Strong Se-
rializability.
There are two kinds of write requests. The
create_accounts and create_transfers requests add
a series of accounts or transfers to the database. There
are also six read requests. Users look up specific
accounts or transfers by ID using lookup_accounts
and lookup_transfers. To query accounts or trans-
fers matching a predicate, one uses query_accounts,
query_transfers, and get_account_transfers. Fi-
nally, get_account_balances reads historical balance
information.
Requests are atomic in the sense that either all or
none of a request’s events execute. However, specific
events in a committed request can logically fail, re-
turning error codes. For example, a create_transfers
request might try to create two transfers, the first of
which fails due to a balance constraint, and the second
of which succeeds. This request can still commit, even
though only one of its two transfers was added to the
database.

To make one event contingent on another, TigerBee-
tle offers a sort of logical sub-transaction within a re-
quest, called a chain. Each event in a chain succeeds
if and only if all others succeed. This allows users to
express complex, multi-step transfers that succeed or
fail atomically.

2 Test Design

We built a test suite for TigerBeetle using the Jepsen
testing library, which combines property-based test-
ing with fault injection. We tested TigerBeetle ver-
sions 0.16.11 through 0.16.30, including several devel-
opment builds. Our tests ran on clusters of three to
six9 Debian nodes, both in LXC containers and on EC2
VMs.

TigerBeetle offers only a “smart” client which con-
nects to every node in the cluster. These clients can
mask concurrency errors by routing all requests to
a single server.10 In addition to testing this smart-
client behavior, we also ran tests with each client re-
stricted to a single node, by passing invalid addresses
for the other nodes. Since TigerBeetle followers do not
proxy register requests to the leader, most clients
spend their time attempting futile requests against in-
exorable followers. This is fine for safety testing, so
long as they time out quickly enough to keep up with
leader elections.

TigerBeetle’s domain-specific data model poses a chal-
lenge for validation. Jepsen has well-established
tricks for checking Strict Serializability of lists, sets,
and registers, but TigerBeetle has no direct analogue
to these structures.

As in our 2022 work on Radix DLT, we considered in-
terpreting each account as a list of transfers. Creating
a transfer would be interpreted as a pair of appends
to the debit and credit accounts. A balance read could,
with the help of a constraint solver, often be mapped
to a read of a specific set of transfers. However, this
leaves account creation and most queries untested. It
also makes it difficult to validate the rich semantics of
TigerBeetle transfers. For example, TigerBeetle sup-
ports balancing transfers, which adjusts the amount
of a transfer to ensure the debit (and/or credit) account
maintains certain invariants, like a positive or nega-
tive balance.

Instead, we decided to take advantage of TigerBeetle’s
explicit total order of transactions. In broad strokes,
our checker splits the problem into two interlocking
parts. First, we check that the apparent timestamps
of operations are Strong Serializable. Second, we

7For efficiency, TigerBeetle omits successful results from the actual response messages, and returns only errors, if present.
8Datomic, FaunaDB, and TigerBeetle are all Strong Serializable temporal databases. However, they choose varying semantics for
the flow of time and effects within a transaction. Datomic evaluates the parts of a transaction concurrently, and assigns them
all a single timestamp. Fauna executes them sequentially, but all operations observe a single timestamp. TigerBeetle executes
sequentially and gives each micro-operation a distinct timestamp.

9Unlike most consensus systems, which use majority quorums and work best with an odd number of nodes, TigerBeetle uses flexible
quorums which allows some operations to commit with (e.g.) just three out of six nodes.

10Imagine a write 𝑤 is acknowledged by node 𝑎, but node 𝑏 lags behind, such that a read sent to 𝑏 would not observe 𝑤. This
would be a stale read—a violation of Strong Serializability. Smart clients tend to route all requests to either 𝑎 or 𝑏, rather than
balancing requests between them. A test suite using such a client would likely miss the stale read.
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check that the semantics of those operations, when ex-
ecuted in timestamp order, make sense.

2.1 Timestamp Order

Verifying timestamp order was relatively straightfor-
ward. TigerBeetle added a new client API which al-
lowed us to read the timestamp assigned to every suc-
cessful request. For operations which failed or timed
out, we inferred their timestamps from the timestamp
assigned to any of their effects. For instance, if the cre-
ation of account 3 timed out, but we later read account
3 with timestamp 72, we assumed that write executed
at timestamp 72. TigerBeetle’s promise that times-
tamps are strictly ordered both within and between re-
quests means that this inference should yield an order
compatible with the request timestamps. We ignored
any failed reads, whether definite or indefinite—this
is safe as reads have no semantic side effects.

Timestamp inference required that we eventually ob-
serve the effect of every attempted write. We di-
vided the test into two phases: a main phase involv-
ing writes and reads, and a final read phase where
we tried to read any unseen writes until TigerBeetle
definitively responded “yes, this write exists”, or “no,
it does not (yet) exist.” Our goal was to infer exactly
which operations executed during themain phase, and
the timestamps of those operations.11

If a write was observed, and its inferred timestamp fell
before the timestamp of the last successfully acknowl-
edged write,12 we inferred that it executed during the
main phase. If a write was not observed, we assumed
that it did not execute during the main phase. There
are two possible scenarios:

• TigerBeetle is Strong Serializable. If the write
had executed during the main phase, Strong
Serializability would have ensured its visibility
during the final read phase. Our inference is cor-
rect.

• TigerBeetle is not Strong Serializable. If the
write did not execute during the main phase, our
inference is correct. If it did execute during the
main phase, our inference is incorrect. Wemight
encounter false positives or false negatives—but
in either case, TigerBeetle has failed to maintain
a promised invariant.

If TigerBeetle were Strong Serializable, our checker
would not falsely report an error. If TigerBeetle were
to (e.g.) exhibit a stale read or another violation of
Strong Serializability, we might detect it indirectly. It
could, for example, manifest as a model-checker error

on a different operation much earlier in the history.
This non-locality is not ideal, but we found it an ac-
ceptable tradeoff in exchange for excellent coverage.
Having inferred a set of operations executed during
themain phase, and timestamps for each, we used Elle
to construct a graph over operations. We linked oper-
ations by real-time edges when operation A ended be-
fore operation B began.13 We also linked operations
in ascending timestamp order. A violation of Strong
Serializability (as far as timestamps were concerned)
wouldmanifest as a cycle in this graph. Elle checks for
cycles in roughly linear time, and constructs compact
exemplars of consistency violations.

2.2 Model Checking

To verify that the semantics of TigerBeetle’s requests
and responses were correct, we built a detailed, single-
threaded model of the TigerBeetle state machine
based on the documentation. This model is essen-
tially a datatype with an initial state 𝑖𝑛𝑖𝑡 and a transi-
tion function 𝑠𝑡𝑒𝑝(𝑠𝑡𝑎𝑡𝑒, 𝑖𝑛𝑣𝑜𝑘𝑒, 𝑐𝑜𝑚𝑝𝑙𝑒𝑡𝑒) → 𝑠𝑡𝑎𝑡𝑒′,
which takes a state, the invocation of a request, and
the completion of that request, and returns a new
state. Illegal transitions (for instance, a read whose
completion value does not agree with the state) re-
turned a special invalid state. Given the inferred list
of timestamp-sorted operations from the main phase,
we stepped through each operation in order. Any in-
valid state was reported as an error.
We modeled the state as an immutable data structure
including the current timestamps,14 maps of IDs to
accounts and transfers, transient errors15, a set of in-
dices to support efficient querying, and a few internal
statistics. To model the flow of clocks, we provided
each state with a pre-computed map of IDs to times-
tamps, derived from the reads performed during the
test. Whenever one of those IDs was created, we ad-
vanced the clock to that timestamp.
The state machine is surprisingly complex, involv-
ing over 1,600 lines of Clojure and an extensive test
suite. A broad array of error conditions had to be han-
dled, including duplicate IDs, non-monotonic times-
tamps, balance constraints, incompatible flags, and
more. Linked chains of events required speculative ex-
ecution and rollback of the state—made simpler by our
pure, functional approach. We made extensive use of
Zach Tellman’s Bifurcan, a thoroughly tested library
of high performance persistent data structures.
Modeling the full state machine takes time, but al-
lows extraordinarily detailed verification of correct-
ness. To make checking computationally tractable,

11This technique does not work for imported events, where reads tell us the imported timestamp, rather than the execution times-
tamp. When testing imports, we used very long timeouts, and required that every operation succeed in order to check the history.

12We used the timestamp of the last successful write as the upper bound on the main phase. Writes may have been executed during
the final read phase (e.g. due to network delays), but we ignored them for safety checking.

13For efficiency, we actually computed a transitive reduction of the real-time dependency graph.
14TigerBeetle has three internal timestamps that constrain clock values: the “current” timestamp, and two separate clocks for

imported accounts and transfers, whose timestamps are still monotonic, but lag behind the current time.
15TigerBeetle guarantees that certain classes of errors, called transient errors, ensure that a transfer will always fail, even if re-

submitted under conditions where it would otherwise succeed. These errors are transient in the sense that they are caused by
(potentially) short-lived conditions in the database state, but persistent in the sense that the database must remember them for
all time.
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typical Jepsen tests use only a handful of carefully se-
lected data types and operations on them. The implicit
assumption is that if the database’s concurrency con-
trol protocol handles that selected example correctly,
it is likely correct for other workloads as well. Mod-
eling the state machine in detail allowed us to check
almost16 every17 operation TigerBeetle can perform.
We verified that observed results of queries matched
exactly, down to specific error codes. As discussed in
this report, this approach found bugs we would have
otherwise missed.

2.3 Generating Operations

The downside of testing so much of TigerBeetle’s state
machine is that wemust then generate requests which
exercise it. Generating syntactically valid requests is
easy, but generating requests which often succeed, or
queries which return non-empty results, is surpris-
ingly hard.
Our generator maintained extensive in-memory state
throughout each test, including probabilistic models
of which account and transfer IDs were likely to exist,
which transfers were likely pending, what timestamps
were likely extant, and what each worker process was
currently doing. The generator updated this state
with each operation’s invocation and completion.
We selected Zipfian distributed IDs, ledgers, codes,
and so on, ensuring a mix of very hot and very cool
objects. We used a broad set of parameters to guide
stochastic choices of request types, account and trans-
fer IDs, chain lengths, flags, queries, and probabilistic

state updates. These parameters were carefully tuned
across a variety of concurrencies, request rates, hard-
ware environments, and fault conditions to find a rea-
sonable balance of successes and failures, non-empty
query results, attempted invariant violations, and so
on.

2.4 Fault Injection

Jepsen provides several kinds of faults “out of the
box.” We stressed TigerBeetle with process crashes
(SIGKILL), pauses (SIGSTOP), a variety of transitive and
non-transitive network partitions, and clock changes
ranging from milliseconds to hundreds of seconds, as
well as strobing the clock rapidly back and forth. We
also upgraded nodes through several versions during
tests.
We also introduced a variety of storage faults via a
new file corruption nemesis. We flipped random bits
to simulate (e.g.) cosmic ray interference. We replaced
chunks of the file with other chunks, in an attempt to
simulate misdirected writes. We also took snapshots
of chunks of the file, then restored them later, to sim-
ulate lost writes.
Each TigerBeetle node has a single data file, which
is divided into zones at predictable offsets. Each zone
stores a single kind of fixed-sized record. We scoped
our faults to specific zones—corrupting, for example,
only the write-ahead-log (WAL)’s headers, or restoring
a snapshot of just one of the four redundant copies in
the superblock zone. In many tests we corrupted mul-
tiple zones, or the entire file.

Superblock (96KiB)

4 copies, 24KiB each

WAL prepares (1GiB)

1024 entries, 1MiB each Padding (160KiB)

WAL headers (256KiB)

64 sectors, 4KiB each

Client replies (64MiB)

64 replies, 1MiB each

Grid (variable)

512KiB blocks

Helical CorruptionMinority Corruption

Node 1

Node 2

Node 3

Node 1

Node 2

Node 3

16Our strategy does require that a single ID is never written twice. We complemented the main workload with a dedicated idempo-
tence workload which verifies that duplicate attempts to write the same data never succeed, and never lead to divergent values
for the same ID.

17TigerBeetle includes an automatic timeout mechanism for pending writes, but timeouts are not exactly deterministic, whichmakes
it difficult to model-check.
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We also targeted a variety of nodes for file corrup-
tion. In one scenario, we corrupted data throughout
(e.g.) the superblock, but only on a minority of nodes.
In a second scenario, we corrupted every node’s data,
but selected different chunks of the file for each node.
For example, one node in a three-node cluster might
corrupt the first, fourth, seventh, and tenth chunks
of the grid; another would corrupt the second, fifth,
eighth, and so on. We called this a helical disk fault.
If you imagine arranging the cluster’s nodes into a
ring, and drawing their file offsets along the ring’s
symmetry axis, the corrupted chunks “spin” around
the ring, forming a helix. Because TigerBeetle’s file
layout is (generally speaking) bit-for-bit identical be-
tween up-to-date replicas, this avoids corrupting any
single record in the database beyond repair.18

3 Results

3.1 Requests Never Time Out (#206)

Our first tests of TigerBeetle routinely stalled forever.
For example, in this test run the very first request
never returned, which prevented the test from ever
completing. This turned out to be a consequence of an
unusual design decision: TigerBeetle actually guaran-
teed that requests would never time out:

Requests do not time out. Clients will con-
tinuously retry requests until they receive
a reply from the cluster. This is because
in the case of a network partition, a lack
of response from the cluster could either
indicate that the request was dropped be-
fore it was processed or that the reply was
dropped after the request was processed.

The session documentation reaffirmed this stance: a
TigerBeetle client “will never time out” and “does
not surface network errors”. This is particularly sur-
prising since most systems do expose network errors,
whether Strong Serializable or otherwise.

With TigerBeetle’s strict consistency
model, surfacing these errors at the
client/application level would be mislead-
ing. An error would imply that a request
did not execute, when that is not known[.]

There are, broadly speaking, two classes of errors in
distributed systems. A definite error, like a constraint
violation, signifies that an operation has not and will
never happen. An indefinite error, like a timeout, sig-
nifies that the operation may have already happened,
might happen later, or might never happen.19 Con-
sistent with the documentation, TigerBeetle tries to
conceal both kinds of error through an unbounded in-
ternal retry loop.

However, TigerBeetle clients actually can pro-
duce timeout errors. The Java client’s asyn-
chronous methods, like createTransfersAsync, re-
turn CompletableFutures. CompletableFuture usu-
ally represents operations, like network requests,
which are subject to indefinite failures. Indeed,
timeouts are integral to the datatype: one awaits
a future using .get(timeout, timeUnit), or wraps
it in .orTimeout(seconds, timeUnit) to throw a
timeout automatically. Likewise, the .Net client’s
createTransferAsync and friends return Task objects
which offer timeout-driven Wait() methods.

Even if users constrain themselves to synchronous
calls, applications rarely have unbounded time to run.
It seems likely that applications will wrap TigerBee-
tle calls in their own timeouts. If they do not, the ap-
plication may eventually terminate, which is a worse
kind of indefinite failure. Even when applications can
wait, their clients (or the human beings waiting for an
operation), may give up at any time. The challenge of
indefinite errors is intrinsic to asynchronous networks
and cannot be eliminated.

Because TigerBeetle clients handle all failures
through a silent internal retry mechanism, they un-
necessarily convert definite errors into indefinite
ones. For example, imagine a common fault: a Tiger-
Beetle server has crashed. An application makes a
createTransfer request. Its client attempts to open
a TCP connection to submit the request, and receives
ECONNREFUSED. The client knows internally that this re-
quest cannot possibly have executed: it has a definite
failure. However, it refuses to inform the caller, and
instead retries again and again. The caller’s only sign
of an error is that the client appears to have stalled.
When the caller times out or eventually shuts down,
that definite failure becomes indefinite. Instead of
making indefinite errors impossible, TigerBeetle’s
client design proliferates them.

This is an ongoing discussion within TigerBeetle
(#206). Jepsen recommended that TigerBeetle de-
velop a first-class representation for definite and in-
definite errors, and return those errors to callers when
problems occur. It is perfectly fine to keep automatic
retries—perhaps even unbounded ones—but this be-
havior should be configurable. TigerBeetle clients
should take options controlling the maximum time al-
lowed for opening a connection, and for awaiting re-
sponses from a submitted request. Users can request
unbounded timeouts if desired.

18One notable exception to this rule is the WAL. The write-ahead log is built as a ring buffer. The head of the write-ahead log is
critical: if the head of the WAL is corrupted on one node, that node cannot trust its own data file and must ask the other nodes
to help it repair the damage. Because some nodes may lag behind others, it is possible that the head of the WAL could be at
different file offsets on different nodes. A helical fault could corrupt the head on a majority of nodes, preventing the cluster from
recovering.

19To be clear: a definite failure can be retried, and that retry operation might succeed. When we say a definite error means an
operation will “never happen,” we refer to the original operation, not retries.
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3.2 Client Invalid Pointer Dereference (#2435)

Because synchronous client operations never timed
out, our early tests generally failed to terminate. To
avoid this problem, we tried wrapping calls to Tiger-
Beetle clients in two kinds of timeouts. In the first, we
spawned a new thread tomake a synchronous call, and
interrupted that thread if it did not complete within a
few seconds.20

(let [worker (future (.createAccounts
client accounts))

ret (deref worker 5000 ::timeout)]
(if (= ret ::timeout)

(do (future-cancel worker)
(throw {:type :timeout}))

retval))

In 0.16.11, this immediately segfaulted the entire
JVM. TigerBeetle’s Java client is implemented via a
JNI binding to a client library written in Zig, and a Zig
panic crashes the JVM as well. Concerned that our
use of multiple threads or a thread interrupt might
be at fault, we tried an alternate approach, using
the client’s asynchronous methods which returned a
CompletableFuture. If that future did not produce a
result within a few seconds, we closed the client.

(let [future (.createAccountsAsync
c (account-batch accounts))

ret (deref future 5000 ::timeout)]
(if (= ret ::timeout)

(do (close! client)
(throw+ {:type :timeout}))

ret))

—this too segfaulted the JVM.
In a closely related issue, calling client.close() in
0.16.11, on a freshly opened client, caused the JVM

to panic with a reached unreachable code error in
tb_client.zig:122.
TigerBeetle traced these problems to unset fields in
the client’s request data structure (#2435). These
fieldswere normally initialized during request submis-
sion. However, if the client was closed between re-
quest creation and submission, it would dereference
the default 0xaaa... address: a Zig language default.
This issue was fixed in 0.16.12.

3.3 Client Crash on Eviction (#2484)

The official TigerBeetle clients crashed the entire pro-
cess when a server informed them that their session
had been evicted. TigerBeetle allows only 64 concur-
rent sessions by default, making it relatively easy to
hit this limit.21 TigerBeetle also evicts clients which
use a newer client version than the server.
This behavior made it impossible for clients to cleanly
recover from eviction, or to back off under load. Tiger-
Beetle changed this behavior in #2484. As of 0.16.13,
clients return errors to their callers on eviction, rather
than crashing the entire process.

3.4 Elevated Latencies on Single-Node Faults
(#2739)

When a single node failed, we often saw client laten-
cies jump by three to five orders of magnitude. In this
test of a five-node cluster, with clients constrained to
a single node each, killing a single node caused mini-
mum latencies to rise from less than one millisecond
to ten seconds. There were fluctuations down to one
second, but in general elevated latencies lasted for the
full duration of a fault.

20This is Jepsen’s standard timeout macro, used when clients don’t time out reliably on their own. For clarity, we’ve omitted some
error handling.

21This low session limit is an intentional design choice: TigerBeetle benefits from large batches of requests, and enforcing a smaller
number of clients nudges users towards designs which can perform client-side batching efficiently. One imagines a PgBouncer-
style proxy might also come in handy here.
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Under higher load, the situation could become consid-
erably worse. Consider this test run with a three-node
cluster, where each client was allowed to connect to all
three nodes. A few seconds into the test, we killed node
n3. This drove latencies on every client from between
1–50milliseconds to roughly a hundred seconds per re-
quest. This situation persisted for almost a thousand
seconds, until we restarted n3.
In the original Viewstamped Replication and View-
stamped Replication Revisited, a primary sends a pre-
pare message to every secondary when it wants to per-
form an operation. The secondaries send acknowledge-
ments back to the primary, which can commit once 𝑓
replicas have acknowledged. The failure of any single
node (shown in red) causes a single acknowledgement
to be lost, but does not affect any of the other nodes
or their acknowledgements. The system as a whole is
relatively insensitive to single-node failures.

Primary

Viewstamped Replication

Prepares

Ack

Ack

Ack

Ack

Backup Backup Backup Backup

Primary

TigerBeetle

Prepare

Ack

Ack

Ack

Ack

Backup Backup Backup Backup

Prepare

Prepare

Prepare

TigerBeetle approaches prepares differently. Nodes
are arranged in a ring, and the primary sends a sin-
gle prepare message to the next secondary in the ring.
That secondary sends a prepare to the following sec-
ondary, and so on, until all nodes have received the
message. Acknowledgements are sent directly to the
primary. This approach reduces the bandwidth re-
quirements for any single node, but creates a weak-
ness: if the primarymust receive 𝑓 acknowledgements

to commit, the failure of any one of the next 𝑓 replicas
in the ring will prevent commit entirely. The effect of
a single-node failure cascades through the rest of the
ring. We opened issue #2739 to track this issue.

Version 0.16.30 includes a new tactic to mitigate
this problem. Sending every other prepare message
backwards around the ring allows half of prepares
to bypass the faulty node. Since prepares must be
processed in order, the replicas which receive these
counter-ringward prepares must repair the ringward
prepare messages they missed. Repairing takes time,
but the overall effect is significant. Rather than
hundred-second latencies during a single-node fault,
0.1.16 delivered 1–30 second latencies in our tests.

After our collaboration, TigerBeetle continued work
on single-node fault tolerance, adding a new series
of deterministic performance tests to their simula-
tion framework. As of version 0.16.43, TigerBeetle
includes a host of performance improvements. Nodes
replicate in both directions around the ring, which re-
duces latencies and the impact of single failures. The
ring topology is now dynamic: and the cluster contin-
ually adjusts the order of nodes to minimize latency
based on network conditions and faults.

3.5 Incorrect Header Timestamps in Java Client
(#2495)

To support Jepsen’s tests, TigerBeetle added a new, ex-
perimental API in 0.16.13 for obtaining the execution
timestamp for each request from a header included in
response messages. In the Java client, this API rou-
tinely returned incorrect and duplicate timestamps.
For example, both of these create-transfers opera-
tions returned identical timestamps.

{:index 5827,
:type :ok,
:process 1,
:f :create-transfers,
:value [:ok],
:timestamp 1736185975365035812}

{:index 5829,
:type :ok,
:process 11,
:f :create-transfers,
:value [:ok :ok :ok :ok],
:timestamp 1736185975365035812}

TigerBeetle traced this bug to a mutable singleton
response object in the Java client: Batch.EMPTY. Ev-
ery empty response used the same instance of this
object, updating its header to reflect that response’s
timestamp. As responses overwrote each other’s head-
ers, callers observed incorrect timestamps. Since
TigerBeetle represents entirely-successful responses
as empty batches, this happened quite often.

This bug (#2495) was fixed in 0.16.14, just seven days
after 0.6.13’s release. It did not affect the correctness
of the actual data involved, only request timestamps
from the Java client’s header API. We believe the im-
pact to users was likely nil.
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3.6 Missing Query Results (#2544)

In version 0.16.13, responses for query_accounts,
query_transfers, and get_account_transfers rou-
tinely omitted some or all results.22 Missing results
were always at the end: each response was a (possi-
bly empty) prefix of the correct results. This behav-
ior occurred frequently in healthy clusters. For exam-
ple, take this test run, where 281 seconds into the test,
a client called query_transfers with the following fil-
ter:

{:flags #{:reversed}
:limit 9
:ledger 3
:code 289}

This query returned a single result:

[{:amount 34N,
:ledger 3,
:debit-account-id 3137N,
:pending-id 0N,
:credit-account-id 1483N,
:user-data 9,
:id 327610N,
:code 289,
:timeout 0,
:timestamp 1733448783658756894,
:flags #{:linked}}]

However, our model expected eight additional trans-
fers which TigerBeetle omitted. For instance, trans-
fer 326112 had ledger 3 and code 289, and was suc-
cessfully acknowledged five seconds before this query
began. It should have been included in these results,
but was not.

{:amount 21,
:ledger 3,
:debit-account-id 123076N,
:pending-id 0N,
:credit-account-id 51358N,
:user-data 2,
:id 326112N,
:code 289,
:timeout 0,
:timestamp 1733448782536800935,
:flags #{}}

Note that this query asked for transfersmatching both
ledger = 3 and code = 289. Queries which filtered on
only a single field did not exhibit this problem. Tiger-
Beetle traced the cause to a bug in the zig-zag merge
join between multiple indices (#2544). When travers-
ing an index, a bounds check prevented scanning the
same chunk of records twice. During a join between
two indices, the scans informed one another that some
records can be safely skipped. This process could push
the highest (or lowest) key outside the bounds check
in the wrong direction, causing the scan to terminate
early. The issue was fixed in version 0.16.17.

This bug went undetected by all four TigerBeetle
fuzzers which perform index scans. Two fuzzers,
fuzz_lsm_tree and fuzz_lsm_forest, did not perform
joins. The other two, vopr and fuzz_lsm_scan, gener-
ated objects which happened to appear consecutively
in each index—the “zig-zag” part of themerge join was
never executed. Rewriting the scan fuzzer to gener-
ate unpredictable objects helped it reproduce this bug
quickly.

3.7 Panic! At the Disk 0 (#2681a)

Occasionally, tests with single-bit file corruption in
the superblock, WAL, or grid zones caused TigerBeetle
0.16.20 to crash on startup. The process would print
panic: reached unreachable code, then exit.23

These crashes were caused by three near-identical
bugs in checking sector padding. For example, each
superblock header in TigerBeetle’s data file contains
an unused padding region normally filled with zeroes.
Similarly, entries in the WAL and grid blocks may
have zero padding bytes at the end. TigerBeetle’s
checksums cover the data stored in each chunk, but
exclude the padding. If a bit in the padding flipped
from zero to one, the chunk’s checksum would still
pass. Then, TigerBeetle checked to make sure the
padding bytes were still zeroed. When it encountered
the flipped bit, that failed assertion caused the server
to crash. This is perhaps worth logging, but damage
to padding bytes does not compromise safety. The cor-
rupted padding could be re-zeroed or repaired from
other replicas.

TigerBeetle’s internal testing with the VOPR did not
discover this bug because it corrupted entire sectors,
rather than single bits. Corrupting a sector caused
the checksum to fail and triggered the repair process.
The zero-padding assertion was never reached! Tiger-
Beetle revised the VOPR (#2681) to introduce single-
byte errors, which reproduced the bugs. As of 0.16.26,
TigerBeetle repairs sectors with corrupt padding, in-
stead of crashing.

3.8 Panic Due to Superblock Bitflips (#2681b)

In a closely related bug, TigerBeetle could crash with
an identical panic: reached unreachable code error,
when we flipped bits in the superblock’s region rather
than padding. Each of the superblock’s four copies in-
cludes a unique two-byte copy number, so that Tiger-
Beetle can detect if a write or read of the superblock
wasmisdirected by the disk. However, each copy of the
superblock was supposed to have an identical check-
sum. Those checksums therefore skipped over the
copy number.

When writing a superblock back to disk, TigerBee-
tle checked to make sure (#2681) that the copy num-
ber was between 0 and 3. If the copy number had
been corrupted on disk, and that corrupted version

22This also occurred with get_account_balances, but our test harness didn’t yet cover that API call.
23All TigerBeetle assertion failures printed reached unreachable code then exited—there was no error message to tell them apart.

Debugging builds offered a stacktrace.
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read into memory, that assertion would fail at write
time, causing a panic. TigerBeetle resolved this in ver-
sion 0.16.26 by resetting the copy number, rather than
crashing.

3.9 Checkpoint Divergence on Upgrade (#2745)

When testing upgrades from 0.16.25 and before to
0.16.26 and higher, we observed repeated TigerBee-
tle crashes with log messages like panic: checkpoint
diverged. For example, this one-minute test up-
graded a five-node cluster from 0.16.25 to 0.16.26,
with no other faults. Node n5 detected the new bi-
nary at 21:48, and switched to executing 0.16.26 at
22:01. Immediately after starting, it panicked at
replica.zig:1766:

2025-02-13 21:22:06.159Z error(replica):
4: on_prepare: checkpoint diverged (op=23040
expect=3779fc8a6a13bf5cf9f995b8895c2609
received=05383d884c680d15e726071358854f67
from=2)
thread 227936 panic: checkpoint diverged

TigerBeetle traced this crash to a change in the
CheckpointState structure in 0.16.26. Between check-
points, TigerBeetle tracks a set of released blocks
in the file. In 0.16.26, TigerBeetle changed when
that set was flipped to empty. The old version of
CheckpointState did not need to track released blocks,
because that set was always empty at checkpoint time.
The new version included released blocks. To en-
sure older replicas could still sync state from newer
ones, nodes running 0.16.26 could send both the old
and new versions of CheckpointState. This allowed a
node running 0.16.26 to send a backwards-compatible
CheckpointState with an empty set of released blocks
to a node running 0.16.25. If that node then restarted
on 0.16.26, it would be missing the released blocks
which other replicas knew about. Thankfully, the as-
sertion detected this divergence and crashed the node,
rather than allowing clients to observe inconsistent
data.

We found this bug after several later versions had al-
ready been released. Because it requires state syn-
chronization, rather than the normal replication path,
we believe healthy and non-lagging clusters shouldn’t
encounter this bug. The impact should also be limited
to a minority of nodes. Based on these factors, and
a lack of test coverage for upgrades in general, Tiger-
Beetle opted not to release a patched version of 0.16.26.
Instead, the team updated the changelog (#2745) to in-
form customers of the hazard. Operators should pause
all clients and wait for replicas to catch up before up-
grading to (or past) 0.16.26.

3.10 Panic in release_transition on Multiple
Upgrades (#2758)

In upgrade tests from 0.16.16 to 0.16.28, we found
that TigerBeetle could crash with an assertion failure
in replica.zig’s release_transition function. This

happenedwhenwe executedmultiple upgradeswithin
~20 seconds of one another, or when nodes crashed or
paused during the upgrade process. We could repro-
duce this bug reliably–with process pauses, it mani-
fested a few times per minute.

TigerBeetle traced this problem to an over-zealous as-
sertion in the upgrade code (#2758).

Imagine a node currently runs version 𝐴, and an oper-
ator replaces its binary with version 𝐵. The node de-
tects that version𝐵 is available, opens the new binary
with a memfd, and uses exec() to replace the running
process with that new code. Meanwhile, an operator
replaces the binary with version 𝐶. The replica starts
up with 𝐵, and as a safety check, asserts that the bi-
nary on disk (not the memfd!) has version header 𝐵.
This assertion fails, since the binary is actually ver-
sion 𝐶.

TigerBeetle resolved this issue in 0.16.29 by replacing
the assertion with a warning message; running a dif-
ferent version than the binary on disk does not actu-
ally break safety.

3.11 Panic on Deprecated Message Types
(#2763)

We encountered another occasional crash in the up-
grade from 0.16.26 to 0.16.27. In this test run,
two nodes crashed shortly after the upgrade. Both
logged panic: switch on corrupt value, originating
in message_header.zig’s into_any function. The
crashed nodes recovered after a restart.

This crash was caused by a switch expression which
dispatched based on the type of a message. Prior
to 0.16.28, Tigerbeetle removed deprecated message
types from these switch expressions. An older node
could send a network message of a type that the newer
node would have no corresponding switch case for.
TigerBeetle resolved the issue in version 0.16.29 by
adding the deprecated message types back into the
switch statements, and simply ignoring them.

3.12 No Recovery Path for Single-Node Disk
Failure (#2767)

TigerBeetle offers exceptional resilience to data file
corruption. However, disk failure, fires, EBS volume
errors, operator errors, and more can cause a node
to lose its entire data file, or to corrupt that data be-
yond repair. TigerBeetle is fault tolerant and can con-
tinue running safely with a minority of nodes offline.
However, failed nodes do need to be replaced eventu-
ally, and most distributed systems have a mechanism
for doing so. In systems which support membership
changes, the best path is often to add a new, replace-
ment node to the cluster, and to remove the failed node.
Others have dedicated replacement procedures.

TigerBeetle, surprisingly, has no story for replacing
a failed node. The documentation says nothing on
the matter. There is an undocumented recovery
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procedure: users can run tigerbeetle format to re-
initialize the node with an empty data file, and allow
TigerBeetle’s automatic repair mechanisms to trans-
fer the data from other nodes. Since our tests often
damaged data files beyond repair, we used this refor-
mat approach regularly.
Reformatting nodes works most of the time, but as
TigerBeetle explained to Jepsen, it may be unsafe. For
example, imagine a committed operation op is present
on two out of three nodes, and one of those nodes is
reformatted. The cluster now has a two-thirds ma-
jority which can execute a view change without ob-
serving op; the operation is then lost. In our testing,
data loss was infrequent, and limited to just a few

operations. For example, this run lost five acknowl-
edged transfers which were created in two separate
requests. Another problem arises when nodes are up-
graded. If a node is formatted using a newer binary,
but the cluster has not yet completed the transition
to that version, the node will crash on startup during
replica.zig/open.
TigerBeetle had been aware of this issue #2767 for
some time, and planned to add a safe recovery path
for the loss of a node. However, it took time to design,
build, and document. After our collaboration, Tiger-
Beetle completed this work. Version 0.16.43 incorpo-
rates a new tigerbeetle recover command to recov-
era node which has suffered catastrophic data loss.

№ Summary Event Required Fixed in
206 Requests never time out None Unresolved
2435 Client uninitialized memory access on close Interrupt or close a client 0.16.12
2484 Client crash on eviction Newer, or too many, clients 0.16.13
2739 Elevated latencies on single-node fault Pause or crash 0.16.43
2495 Incorrect header timestamp from Java client None 0.16.14
2544 Missing query results None 0.16.17
2681a Panic on bitflips in chunk padding Bitflip and restart 0.16.26
2681b Panic on bitflips in superblock copy number Bitflip and restart 0.16.26
2745 Checkpoint divergence 0.16.26 upgrade during sync Documented
2758 Panic in release_transition on upgrades Upgrades in quick succession 0.16.29
2763 Panic on deprecated message types Upgrade 0.16.29
2767 No recovery path for single-node disk failure Single-node disk failure 0.16.43

4 Discussion

We found two safety issues in TigerBeetle.2425 Prior to
version 0.16.17, TigerBeetle often omitted results from
queries with multiple filters, even in healthy clusters.
We also found a very minor issue in which a debugging
API in the Java client, added specifically for our tests,
returned incorrect and duplicate timestamps for oper-
ations. As of 0.16.26 and higher, our findings were
consistent with TigerBeetle’s claims of Strong Serial-
izability—one of the strongest consistency models for
concurrent systems. TigerBeetle preserved this prop-
erty through various combinations of process pauses,
crashes, network partitions, clock errors, disk corrup-
tion, and upgrades.

We also found seven crashes in TigerBeetle. Two af-
fected the Java client: an uninitialized memory access
caused by a shared mutable data structure, and a de-
sign choice to crash the entire process when a server
evicted a client. Both were fixed by 0.16.13. Five in-
volved servers: two panics on disk corruption, and
three more involving upgrades. All crashes were re-
solved by 0.16.29, with the exception of #2745, which
is now documented.

We found some surprising performance and availabil-
ity issues in TigerBeetle. Server latencies jumped dra-
matically when even a single node was unavailable.
This behavior is unusual—most consensus systems
are relatively insensitive to single-node failures—and
stemmed from a design choice to replicate data in a
ring, rather than broadcasting from the primary to
all backups directly. This behavior was somewhat im-
proved in 0.16.30, but still quite noticeable. After our
collaboration, TigerBeetle extended their simulation
tests to measure performance under various faults,
and used those tests to drive extensive improvements
in 0.16.43. The ring topology now continually adapts
to observed latencies, and messages are broadcast in
both directions around the ring. We believe these im-
provements should significantly mitigate the latency
impact of failures.

TigerBeetle also lacked a safe path to recover a node
which had suffered catastrophic disk failure. After our
collaboration, TigerBeetle built a new recovery com-
mand, which is available as of 0.16.43.

Only one issue remains unresolved. By design, client
requests are retried forever, which complicates error
handling. TigerBeetle plans to address this, but the
work will take some time.

24Issue 2745 is in some sense both a safety and liveness issue. Replicas disagree on which blocks are free, violating a key safety
property in TigerBeetle’s design: replicas should have identical on-disk state. However, a defensive assertion converts this safety
violation to a crash, which prevents users from observing the divergence. In this sense it is a liveness issue, and we report it as
such.

25For the formal verification enthusiasts in the crowd: yes, recoverable crashes, transient availability issues, and high latency are
all technically safety issues, in that they involve finite counterexamples.
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We recommend users upgrade to 0.16.43, which ad-
dresses all but one of the issues reported here. Users
should exercise particular caution during the upgrade
to (or past) 0.16.26; consult the release notes. We also
suggest that users simulate single-node failures in a
testing environment, and measure how their applica-
tion responds to elevated latencies.

TigerBeetle exhibits a refreshing dedication to cor-
rectness. The architecture appears sound: View-
stamped Replication is a well-established consensus
protocol, and TigerBeetle’s integration of flexible quo-
rums and protocol-aware recovery seem to have al-
lowed improved availability and extreme resilience
to data file corruption. Integrating these protocols
does not appear to have compromised the key invari-
ant of Strong Serializability. Most of our findings
involved crashes or performance degradation, rather
than safety errors. Moreover, several of those crashes
were due to overly cautious assertions.

We attribute this robustness in large part to TigerBee-
tle’s extensive simulation, integration, and property-
based tests, which caught a broad range of safety
bugs both before and during our engagement. As
we brought new issues to the TigerBeetle team, they
quickly expanded their internal test suite to reproduce
them. We are confident that TigerBeetle’s investment
in careful engineering and rigorous testing will con-
tinue to pay off, and we’re excited to see these tech-
niques adopted by more databases in the future.

As always, we caution that Jepsen takes an experi-
mental approach to safety verification: we can prove
the presence of bugs, but not their absence. While
we make extensive efforts to find problems, we cannot
prove correctness.

4.1 Disk Faults

TigerBeetle offers exceptional resilience to disk faults.
In our tests, it recovered from bitflips and other kinds
of file corruption in almost every part of a node’s data
file, so long as corruption was limited to a minority of
nodes. In some file zones, like the grid, TigerBeetle tol-
erated the loss or corruption of all but one copy. In the
superblock, client replies, and grid zones of the data
file, TigerBeetle could recover our “helical” faults, in
which every node experienced data corruption spread
across disjoint regions of the file.

As previously noted, bitflips in the superblock copy
number, or in various zero-padding regions, could
cause TigerBeetle to crash. These issues have been
resolved as of 0.16.26.

Rolling back all four copies of a node’s superblock to
an earlier version can permanently disable a Tiger-
Beetle node; it will crash upon detecting WAL entries
newer than the superblock. TigerBeetle considers this
outside their fault model, and we concur. Given that
TigerBeetle performs four separate, sequential writes
of the superblock and reads them back to confirm their
presence, it seems remarkably unlikely to encounter
this by accident.

Helical faults in the WAL can permanently disable a
TigerBeetle cluster. The most recent “head” entry of
the WAL is critical, and since some nodes may lag be-
hind others, they may have heads at different file off-
sets. In our tests, helical faults often corrupted the
head of the WAL on a majority of nodes, rendering the
entire cluster unusable.

When a node’s disk file is lost or corrupted beyond re-
pair, TigerBeetle currently has no safe path for recov-
ery. We recommend users exercise caution when re-
formatting a failed node. Avoid upgrades when a node
is down, and try to reformat a node only when the re-
mainder of the cluster appears healthy. If possible,
pause clients and check node logs before upgrading:
none should be logging sync-related messages.

4.2 Retries

Users should think carefully about the official Tiger-
Beetle clients’ retry behavior. By default, clients retry
operations forever. Synchronous operations will never
time out; you may need to implement your own time-
outs. The futures returned by asynchronous calls
do offer APIs with timeouts, but the client will con-
tinue retrying those operations forever. Long-lasting
unavailability could cause TigerBeetle clients to con-
sume unbounded memory as they attempt to buffer
and retry an ever-growing set of requests.

This retry behavior flattens definite and indefinite
failures into indefinite ones: everything becomes a
timeout. Contrary to TigerBeetle’s documentation, in-
definite network errors are very much possible. In-
deed, they are more likely in TigerBeetle than in sys-
tems which return distinct network errors! Moreover,
TigerBeetle users may find it more difficult to imple-
ment (e.g.) exponential backoff or load-shedding cir-
cuit breakers: in order to abandon a single request,
the entire client must be torn down.

Jepsen recommends that users carefully consider and
test their timeout behavior during faults. We also sug-
gest TigerBeetle introduce at least two kinds of error,
so users can distinguish between definite and indefi-
nite faults. Finally, clients should take configurable
timeouts, so users can bound their time and memory
consumption.

4.3 Crashing as a Way of Life

TigerBeetle prizes safety, and employs defensive pro-
gramming techniques to ensure it. In addition to care-
fully designed algorithms and extensive testing, both
client and server code are full of assertions which
double-check that intended invariants have been pre-
served. Assertion failures crash the entire program to
preserve safety. When this happens, clients or servers
may be partially or totally unavailable, sometimes for
minutes, sometimes permanently. Many of our find-
ings involved an assertion which turned what would
have been a safety hazard into a simple crash: a wel-
come tradeoff for safety-critical systems.
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This is a sensible approach. Complex systems ensure
safety through an interlocking set of guards: each
guard screens out errors the othersmight havemissed.
Abandoning possibly-incorrect execution is also a core
tenet of Erlang/OTP’s “let it crash” ethos. However,
TigerBeetle’s approach is not without drawbacks.

First, several of the crashes we found in this report
were due to overly conservative assertions. For in-
stance, prior to 0.16.26, TigerBeetle crashed on en-
countering non-zero bytes in unused padding regions
on disk. Safety was never endangered by these errors,
but the crashes compromised availability—and could
push users into the dangerous recovery path of refor-
matting.

Second, in 0.16.11, TigerBeetle’s client library forcibly
crashed the entire application process when a client
used a newer version than the server, or when the
server simply had too many connections. These are er-
rors that a well-designed application can and should
recover from—for instance, through an exponential
backoff and retry system, or by coordinating with
other clients. Crashing the process, instead of return-
ing an error code or throwing an exception, denies the
application the ability to make these mitigations.

In Erlang, “let it crash” means more than simply aban-
doning computation early. It is integrally linked with
Erlang’s actor model, which allows actors to crash in-
dependently of one another. It also relies on Erlang’s
supervisor trees: every actor has a supervisor which is
notified of a crash and can restart the failed computa-
tion. In TigerBeetle, the failure domain is the entire
POSIX process, and the supervisor, where one exists,
is something like the init system orKubernetes. These
supervisors generally lack visibility intowhy the crash
happened or how to recover, and they are often not
equipped to adapt to changing circumstances. They
may restart the process over and over again, crashing
every time. On repeated crashes, they may give up on
the process forever.

Despite these limitations, we feel TigerBeetle makes
a reasonable compromise. TigerBeetle is intended for
financial systems of record where integrity is key, and
overly-cautious assertions can be fixed easily as they
arise. Those assertions also help to experimentally
validate and guide the mental models of engineers
working on TigerBeetle. TigerBeetle’s clients have
shifted more towards returning error codes, rather
than crashing outright.

More generally, we encourage engineers to think
about fault domains when designing error paths. Ask,
“If wemust crash, how canwe keep a part of the system
running?” And after a crash, “How will that part re-
cover?” This is especially important for client libraries,
which are guests in another system’s home.

4.4 Future Work

TigerBeetle includes a timeout mechanism for pend-
ing transfers. We do not know how to robustly test
this system, since timeouts may, by design, not void
a transfer until some time after their deadline has
passed. We would like to revisit timeout seman-
tics with an eye towards establishing quantitative
bounds.
During the course of this research, Jepsen, TigerBee-
tle, and Antithesis collaborated to run Jepsen’s Tiger-
Beetle test suite within Antithesis’s environment—
taking advantage of Antithesis’ deterministic simula-
tion, fault injection, and time-travel debugging capa-
bilities. These experiments are still in the early stages,
but could lay the groundwork for a powerful, comple-
mentary analysis of distributed systems.
Multi-version systems are also devilishly hard to pull
off. While TigerBeetle already had excellent test cov-
erage for single versions, they lacked fuzz tests for
cross-version upgrades. Our tests found several issues
in the upgrade process, and TigerBeetle plans to ex-
pand their testing of upgrades in the future. Similarly,
membership changes in distributed systems are noto-
riously challenging, and currently unimplemented in
TigerBeetle. As TigerBeetle builds support for adding
and removing nodes, we anticipate a rich opportunity
for further testing.
Finally, TigerBeetle’s approach to retries has been the
subject of ongoing discussion, and redesigning their
approch will take time. We anticipate further work
towards a robust client representation of errors.
This work would not have been possible without the
invaluable assistance of the TigerBeetle team, includ-
ing Fabio Arnold, Rafael Batiati, Chaitanya Bhandari,
Lewis Daly, Joran Dirk Greef, djg, Alex Kladov, Fed-
erico Lorenzi, and Tobias Ziegler. Our thanks to Ellen
Marie Dash for helping write the new file-corruption
nemesis used in this research. We are grateful to Irene
Kannyo for her editorial support. This report was
funded by TigerBeetle, Inc. and conducted in accor-
dance with the Jepsen ethics policy.
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